
Understanding
channels

@kavya719

kavya

inner workings of
channels

goroutines
to execute tasks independently,

potentially in parallel.

channels
for communication, synchronization

between goroutines.

concurrency features

func main() {
tasks := getTasks()

// Process each task.
for _, task := range tasks {

process(task)
}  
 
...

}

hellaTasks

task queue

func worker(ch) {
for { 
 // Get a task.

task := <-taskCh 
process(task)

}
}

func main() {
// Buffered channel.

 ch := make(chan Task, 3)

 // Run fixed number of workers.
for i := 0; i < numWorkers; i++ {

go worker(ch)
}

// Send tasks to workers.
hellaTasks := getTasks()

for _, task := range hellaTasks {
taskCh <- task

}

...
}

task queue

func worker(ch) {
for { 
 // Receive task.

task := <-taskCh 
process(task)

}
}

func main() {
// Buffered channel.

 ch := make(chan Task, 3)

 // Run fixed number of workers.
for i := 0; i < numWorkers; i++ {

go worker(ch)
}

// Send tasks to workers.
hellaTasks := getTasks()

for _, task := range hellaTasks {
taskCh <- task

}

...
}

task queue

func worker(ch) {
for { 
 // Receive task.

task := <-taskCh 
process(task)

}
}

func main() {
// Buffered channel.

 ch := make(chan Task, 3)

 // Run fixed number of workers.
for i := 0; i < numWorkers; i++ {

go worker(ch)
}

// Send tasks to workers.
hellaTasks := getTasks()

for _, task := range hellaTasks {
taskCh <- task

}

...
}

goroutine-safe.
store and pass values between goroutines.
provide FIFO semantics.
can cause goroutines to block and unblock.

channels are inherently interesting

making channels
the hchan struct

stepping back:
 design considerations

sends and receives
goroutine scheduling

making channels

unbuffered channel
ch := make(chan int)

buffered channel
ch := make(chan Task, 3)

make chan

goroutine-safe
stores up to capacity elements,  
and provides FIFO semantics
sends values between goroutines
can cause them to block, unblock

buffered channel
ch := make(chan Task, 3)

 buf

lock

...

recvx

circular queue

mutex

send index

receive index

sendx

hchan

buffered channel
ch := make(chan Task, 3)

 buf

lock

...

recvx

circular queue

mutex

send index

receive index

sendx

hchan

0

0

2 1 0

empty

buffered channel
ch := make(chan Task, 3)

 buf

lock

...

recvx

circular queue

mutex

send index

receive index

sendx

hchan

0

1

buffered channel
ch := make(chan Task, 3)

an enqueue

2 1 0

 buf

lock

...

recvx

circular queue

mutex

send index

receive index

sendx

hchan

0

0

buffered channel
ch := make(chan Task, 3)

two more;
so, full

2 1 0

 buf

lock

...

recvx

circular queue

mutex

send index

receive index

hchan

sendx

1

0

buffered channel
ch := make(chan Task, 3)

a dequeue

2 1 0

make chan

heap

stack

high addr

low addr
program memory

buffered channel
ch := make(chan Task, 3)

allocates an hchan struct on the heap.
initializes it.
returns a pointer to it.

make chan

heap

allocates an hchan struct on the heap.
initializes it.
returns a pointer to it.

ch

buffered channel
ch := make(chan Task, 3)

This is why we can pass
channels between functions,
don’t need to pass  
pointers to channels.

sends and receives

task queue

func main() {
 ...

for _, task := range tasks {
taskCh <- task

}

...
}

func worker() {
for {
task := <-taskCh 
process(task)

}
}

G2G1

ch <- task0

 buf

...
lock

G1

ch <- task0

G1

 buf

...
lock1. acquire

ch <- task0

 buf

...
lock

2. enqueue
task0
copy

G1

ch <- task0

 buf

...
lock3. release

task0
copy

G1

t := <-ch

G2

 buf

...
lock

task0
copy

 buf

...
lock1. acquire

task0
copy

t := <-ch

G2

 buf

...
lock

2. dequeue

task0
copy’

t := <-ch

G2

 buf

...
lock3. release

task0
copy’

t := <-ch

G2

no shared memory 
(except hchan)

copies

“Do not communicate by sharing memory;  
 instead, share memory by communicating.”

no shared memory 
(except hchan)

copies

 buf

...
lock

G1 G2

 buf

...
lock

ch <- task1

G1 G2

 buf

...
lock

ch <- task1
ch <- task2

G1 G2

 buf

...
lock

ch <- task1
ch <- task2
ch <- task3

G1 G2

 buf

...
lock

ch <- task1
ch <- task2
ch <- task3

ch <- task4

G1 G2

 buf

...
lock

ch <- task1
ch <- task2
ch <- task3

ch <- task4

ruh-roh, channel is full!
G1’s execution is paused,
resumed after a receive.

G1 G2

 buf

...
lock

ch <- task1
ch <- task2
ch <- task3

ch <- task4

?

ruh-roh, channel is full!
G1’s execution is paused,
resumed after a receive.

G1 G2

goroutines are user-space threads.

created and managed by the Go runtime, not the OS.
lightweight compared to OS threads.

the runtime scheduler schedules them onto OS threads.

g5 g1 g4g3
OS thread2

M:N scheduling

OS thread1
 g1 g2 g6 g2

interlude: the runtime scheduler

Go’s M:N scheduling is described using three structures:

M: OS thread
G: goroutine
P: context for scheduling.

M

M

G

Go’s M:N scheduling is described using three structures:

M: OS thread
G: goroutine
P: context for scheduling.

M

P

G

Go’s M:N scheduling is described using three structures:

M: OS thread
G: goroutine
P: context for scheduling.

Ps hold the runqueues.
In order to run goroutines (G),  
a thread (M) must hold a context (P).

M

P
runQ

G

G

G

runnable

Go’s M:N scheduling is described using three structures:

M: OS thread
G: goroutine
P: context for scheduling.

}

Ps hold the runqueues.
In order to run goroutines (G),  
a thread (M) must hold a context (P).

M

P
runQ

G

G

G

runnable

current G

running

Go’s M:N scheduling is described using three structures:

M: OS thread
G: goroutine
P: context for scheduling.

}

pausing goroutines

ch <- task4
send on a full channel}

ch <- task4

calls into the scheduler

gopark

M

P

G1

G

G

runQ

runnable

current G

running

}

G1

M

P

G1

G

G

runnable

runQ

current G

waiting

ch <- task4

sets G1 to waiting

calls into the scheduler

gopark

}

G1

ch <- task4

sets G1 to waiting

calls into the scheduler

removes association
between G1, M

gopark

M

P G

G

G1 waiting

runQ

runnable}

G1

G1 waiting

M

P

G

G

runQ

runnable

current G

ch <- task4

schedules a runnable G  
from the runqueue

sets G1 to waiting

calls into the scheduler

removes association
between G1, M

“returns”  
to a

different G}

G1

gopark

This is neat.
G1 is blocked as needed, but not the OS thread.

This is neat.
G1 is blocked as needed, but not the OS thread.

…great, but how do we resume
the blocked goroutine?

after a channel receive, and
the channel is no longer full

the hchan struct stores waiting senders, receivers as well.

...

hchan

sendq

recvq

waiting senders

waiting receivers

 buf

lock
G

elem

sudog

...

waiting G
elem to send/ recv

resuming goroutines

represents a G
in a waiting list

stored as a sudog

G

elem

sudog

...

G1

task4

ch <- task4

G1

creates a sudog for itself, puts it in the sendq
happens before calling into the scheduler.

...

hchan

sendq

recvq

G

elem

sudog

...

G1

task4

ch <- task4

G1

creates a sudog for itself, puts it in the sendq
happens before calling into the scheduler.

receiver
uses it to

resume G1.

...

hchan

sendq

recvq

G

elem

sudog

...

G1

task4

ch <- task4

G1

creates a sudog for itself, puts it in the sendq
happens before calling into the scheduler.

receiver
uses it to

resume G1.

sendq

...

g

elem

...

 buf

lock

task4

task1

G1

t := <-chfull buffer

waiting
sender

{
{

G2

waiting to send
task4

||

sendq

...

g

elem

...

 buf

lock

task4

t := <-ch

G1

task1

dequeue G2

t := <-ch

task1
sendq

...

g

elem

...

 buf

lock

task4

G1pops off sudog

G2

task4

task1
sendq

...

g

elem

...

 buf

lock
G1

t := <-ch
enqueues the sudog’s elem: G2

need to set G1 to runnable

task1

task4

sendq

...

g

elem

...

 buf

lock
G1

t := <-ch

G2

t := <-ch

calls into the scheduler

G1 waiting

M

P

G2

G

runQ

current G

G2

goready 
(G1)

goready 
(G1)

t := <-ch

sets G1 to runnable

calls into the scheduler

G1 runnable

M

P

G2

G

runQ

current G

G2

t := <-ch

sets G1 to runnable

calls into the scheduler

puts it on runqueue

G1

M

P

G2

G

runQ

current G

returns to G2

G2

} runnable

goready 
(G1)

sends and receives
when the receiver

comes first

recvq

...

 buf

lock

t := <-ch

G2

receive on an empty channel: 
G2’s execution is paused

resumed after a send.

empty buffer {

receive on an empty channel: 
G2’s execution is paused

resumed after a send.

recvq

...

 buf

lock

G2

t := <-chempty buffer {

receive on an empty channel: 
G2’s execution is paused

resumed after a send.

recvq

...

 buf

lock

G2

t := <-chempty buffer {

set up state for resumption, and pause
put a sudog in the recvq gopark G2.

recvq

...

 buf

lock

G

elem

...

G2

t

empty buffer

waiting
receiver

{
{

G2

t := <-ch

set up state for resumption, and pause
put a sudog in the recvq gopark G2.

waiting to receive
to t

||

recvq

...

 buf

lock

elem

...

G

t

G2

ch <- task

G1

recvq

...

 buf

lock

elem

...

G

t

G2

enqueue task in the buffer,
goready(G2)

could:

ch <- task

G1

recvq

...

 buf

lock

elem

...

G

t

G2

or we can be smarter.

ch <- task

G1

recvq

...

 buf

lock

elem

...

G

t

G2

ch <- task

G1

or we can be smarter.

the memory location
for the receive

recvq

...

 buf

lock

elem

...

G

t

G2

ch <- task

G1

G1 writes to t directly.

!

the memory location
for the receive

}

per-goroutine stacks heap

stackG1 stack

G2 stack

t

only operations in runtime where this happens.

G1 writes to G2’s stack!

direct send

This is clever.
On resuming, G2 does not need to acquire channel lock
and manipulate the buffer.
 
Also, one fewer memory copy.

goroutine-safe

hchan mutex

store values, pass in FIFO.

copying into and out of hchan buffer

can cause goroutines to pause and resume.

hchan sudog queues

calls into the runtime scheduler  
(gopark, goready)

we now understand channels (sorta)…

a note (or two)…
unbuffered channels 

unbuffered channels always work like the “direct send” case:
receiver first —> sender writes to receiver’s stack.
sender first —> receiver receives directly from the sudog. 

select (general-case)

all channels locked.
a sudog is put in the sendq /recvq queues of all channels.
channels unlocked, and the select-ing G is paused.
CAS operation so there’s one winning case.
resuming mirrors the pause sequence.

stepping back…

simplicity and performance

queue with a lock preferred to lock-free implementation:

“The performance improvement does not materialize from the air,
it comes with code complexity increase.” — dvyokov

simplicity

calling into the runtime scheduler:
OS thread remains unblocked.

cross-goroutine stack reads and writes.
goroutine wake-up path is lockless,
potentially fewer memory copies

need to account for
memory management:

 
garbage collection,

stack-shrinking

performance

}

simplicity and performance

astute trade-offs
between

“The noblest pleasure is
the joy of understanding.”

- Leonardo da Vinci

@kavya719
speakerdeck.com/kavya719/understanding-channels

Railgun: CloudFlare’s web proxy
We chose to use Go because Railgun is inherently
highly concurrent…
Railgun makes extensive use of goroutines and channels.

Docker: software container platform
…Go is geared for distributed computing.
It has many built-in features to support concurrency…

Doozer: Heroku’s distributed data store
Fortunately, Go’s concurrency primitives made the task
much easier.

Kubernetes: Google’s container orchestration platform

Built in concurrency. Building distributed systems in Go is
helped tremendously by being able to fan out …

unbuffered channels

unbuffered channel
ch := make(chan int)

That’s how unbuffered channels (always) work too. 

If receiver is first:
> puts a sudog on the recvq and is paused.
> subsequent sender will “send directly”, and resume the receiver.

If sender is first:  
> puts a sudog for itself on the sendq and is paused.  
> receiver then “receives directly” from the sudog and  
resumes the sender.

func worker() {
for {

select {
case task := <-taskCh:

process(task)
case cmd := <-cmdCh:

execute(cmd)
}

}
}

var taskCh = make(chan Task, 3)
var cmdCh = make(chan Command)

selects

