Contents

CHAPTER 1 WHY CMAKE? 1
1.1 The History of CMake 3

1.2 Why Not Use Autoconf? 3

1.3 Why Not Use JAM, gmake, SCons, or ANT? 4

1.4 Why Not Script It Yourself? 4

1.5 On What Platforms Does CMake Run? 5
CHAPTER 2 GETTING STARTED 7
2.1 Getting and Installing CMake on Your Computer 7
UNIX and Mac Binary Installations 7

Windows Binary Installation 7

2.2 Building CMake Yourself 8
2.3 Basic CMake Usage and Syntax 8
2.4 Hello World for CMake 9
2.5 How to Run CMake? 10
Running CMake’s Qt Interface 11

Running the ccmake Curses Interface 13

Running CMake from the Command Line 15

Specifying the Compiler to CMake 15

Dependency Analysis 16

2.6 Editing CMakeLists Files 17
2.7 Setting Initial Values for CMake 17
2.8 Building Your Project 19
CHAPTER 3 KEY CONCEPTS 21
3.1 Main Structures 21
3.2 Targets 24
33 Source Files 25
34 Directories, Generators, Tests, and Properties 26
35 Variables and Cache Entries 27
3.6 Build Configurations 32
CHAPTER 4 WRITING CMAKELISTS FILES 33
4.1 CMake Syntax 33
4.2 Basic Commands 34
43 Flow Control 35
4.4 Regular Expressions 42

4.5 Checking Versions of CMake 44
4.6 Using Modules 45
Using CMake with SWIG 48

Using CMake with Ot 49

Using CMake with FLTK 50

4.7 Policies 50
. Updating a Project For a New Version of CMake 53

4.8 Linking Libraries 57
Specifying Optimized or Debug Libraries with a Target 59

49 Shared Libraries and Loadable Modules 59
4.10 Shared Library Versioning 64
4.11 Installing Files 66
Installing Prevequisite Shared Libraries 70

4.12 Advanced Commands 82
CHAPTER 5 SYSTEM INSPECTION 85
5.1 Using Header Files and Libraries 85
52 System Properties 87
5.3 Finding Packages 92
5.4 Built-in Find Modules 93
5.5 How to Pass Parameters to a Compilation? 95
5.6 How to Configure a Header File 97
5.7 Creating CMake Package Configuration Files 99
CHAPTER 6 CUSTOM COMMANDS AND TARGETS 103
6.1 Portable Custom Commands 103
6.2 Using add_custom_command on a Target 105
How to Copy an Executable Once it is Built? 106

6.3 Using add_custom_command to Generate a File 107
Using an Executable to Build a Source File 107

6.4 Adding a Custom Target 108
6.5 Specifying Dependencies and Outputs 111
6.6 When There Isn’t One Rule For One Output 112
A Single Command Producing Multiple Outputs 112

Having One Output That Can Be Generated By Different Commands 112
CHAPTER 7 CONVERTING EXISTING SYSTEMS TO CMAKE 115
7.1 Source Code Directory Structures 115
7.2 Build Directories 117
73 Useful CMake Commands When Converting Projects 119
7.4 Converting UNIX Makefiles 120

7.5 Converting Autoconf Based Projects 121
7.6 Converting Windows Based Workspaces 123
CHAPTER 8 CROSS COMPILING WITH CMAKE 125
8.1 Toolchain Files 126
Finding External Libraries, Programs and Other Files 128

8.2 System Inspection 130
Using Compile Checks 131

8.3 Running Executables Built in the Project 133
8.4 Cross Compiling Hello World 136
8.5 Cross Compiling for a Microcontroller 140
8.6 Cross Compiling an Existing Project 143
8.7 Cross Compiling a Complex Project - VTK 145
8.8 Some Tips and Tricks 147
CHAPTER 9 PACKAGING WITH CPACK 149
9.1 CPack Basics 149
Simple Example 150

What Happens When CPack.cmake Is Included? 151

Adding Custom CPack Options 152

Options Added by CPack 153

9.2 CPack Source Packages 154
9.3 CPack Installer Commands 154
9.4 CPack for Windows Installer NSIS 156
CPack Variables Used by CMake for NSIS 156

Creating Windows Short Cuts in the Start Menu 161
Advanced NSIS CPack Options 161

Setting File Extension Associations With NSIS 162

Installing Microsoft Run Time Libraries 163

CPack Component Install Support 163

9.5 CPack for Cygwin Setup 173
9.6 CPack for Mac OS X PackageMaker 176
9.7 CPack for Mac OS X Drag and Drop 178
9.8 CPack for Mac OS X X11 Applications 180
9.9 CPack for Debian Packages 182
9.10 CPack for RPM 183
9.11 CPack Files 183
CHAPTER 10 AUTOMATION & TESTING WITH CMAKE 185
10.1 Testing with CMake, CTest, and CDash 185
10.2 How Does CMake Facilitate Testing? 186

vi

10.3 Additional Test Properties 187
10.4 Testing Using CTest 189
10.5 Using CTest to Drive Complex Tests 191
10.6 Handling a Large Number of Tests 192
10.7 Producing Test Dashboards 194
Adding CDash Dashboard Support to a Project 196

. Client Setup 199
10.8 Customizing Dashboards for a Project 202
Dashboard Submissions Settings 202

Filtering Errors and Warnings 203

Adding Notes to a Dashboard 205

10.9 Setting up Automated Dashboard Clients 206
Settings for Continuous Dashboards 210

Variables Available in CTest Scripts 212

10.10 Advanced CTest Scripting 212
Limitations of Traditional CTest Scripting 213

Extended CTest Scripting 213

10.11 Setting up a Dashboard Server 218
CDash Server 218
Advanced Server Management 220

Build Groups 223

Email 225

Sites 226

Graphs 227

Adding Notes to a Build 228

Logging 229

Test Timing 229

Mobile Support 230

Backing up CDash 230
Upgrading CDash 231

CDash Maintenance 232

10.12 Subprojects 233
Using ctest _submit with PARTS and FILES 236

Splitting Your Project into Multiple Subprojects 237

CHAPTER 11 PORTING CMAKE TO NEW PLATFORMS AND LANGUAGES241

11.1 The Determine System Process 241
11.2 The Enable Language Process 242
11.3 Porting to a New Platform 244
11.4 Adding a New Language 246
11.5 Rule Variable Listing 247

General Tag Variables 247

Language Specific Information 248

Vii

11.6 Compiler and Platform Examples 248
Como Compiler 248

Borland Compiler 249

11.7 Extending CMake 250
Creating a Loaded Command 250

Using a Loaded Command 251

CHAPTER 12 TUTORIALS 255
12.1 A Basic Starting Point (Step 1) 255
Adding a Version Number and Configured Header File 256

12.2 Adding a Library (Step 2) 258
12.3 Installing and Testing (Step 3) 260
12.4 Adding System Introspection (Step 4) 262
12.5 Adding a Generated File and Generator (Step 5) 263
12.6 Building an Installer (Step 6) 267
12.7 Adding Support for a Dashboard (Step 7) 268
APPENDIX A - VARIABLES 269
Variables That Change Behavior 269
Variables That Describe the System 272
Variables for Languages 274
Variables That Control the Build 278
Variables That Provide Information 280
APPENDIX B — COMMAND LINE REFERENCE 287
CMake Command Line Options 287
CMake Generators 292
CTest Command Line Options 294
CPack Command Line Options 298
CPack Generators 299
APPENDIX C — LISTFILE COMMANDS 301
Current Commands 301
Compatibility Commands 366
APPENDIX D — SELECTED MODULES 373

CMake Modules

373

viii

APPENDIX E - PROPERTIES 411
Properties of Global Scope 411
Properties on Directories 414
Properties on Targets 417
Properties on Tests 431
Properties on Source Files 431
Properties on Cache Entries 434

APPENDIX F — CMAKE POLICIES 437

INDEX

447

Chapter 1

Why CMake?

If you have ever maintained the build and installation process for a software package, you will
be interested in CMake. CMake is an open source build manager for software projects that
allows developers to specify build parameters in a simple portable text file format. This file is
then used by CMake to generate project files for native build tools including Integrated
Development Environments such as Microsoft Visual Studio or Apple’s Xcode, as well as
UNIX, Linux, NMake, and Borland style Makefiles. CMake handles the difficult aspects of
building software such as cross platform builds, system introspection, and user customized
builds, in a simple manner that allows users to easily tailor builds for complex hardware and
software systems.

For any project, and especially cross platform projects, there is a need for a unified build
system. Many projects today ship with both a UNIX Makefile (or Makefile.in) and a
Microsoft Visual Studio workspace. This requires that developers constantly try to keep both
build systems up to date and consistent with each other. To target additional build systems
such as Borland or Xcode requires even more custom copies of these files, creating an even
bigger problem. This problem is compounded if you try to support optional components, such
as including JPEG support if libjpeg is available on the system. CMake solves this by
consolidating these different operations into one simple easy to understand file format.

If you have multiple developers working on a project, or multiple target platforms, then the
software will have to be built on more than one computer. Given the wide range of installed
software and custom options that are involved with setting up a modern computer, the chances
are that two computers running the same OS will be slightly different. CMake provides many
benefits for single platform multi-machine development environments including:

2 Why CMake?

e The ability to automatically search for programs, libraries, and header files that may be
required by the software being built. This includes the ability to consider environment
variables and Window’s registry settings when searching.

e The ability to build in a directory tree outside of the source tree. This is a useful feature
found on many UNIX platforms; CMake provides this feature on Windows as well. This
allows a developer to remove an entire build directory without fear of removing source
files.

e The ability to create complex custom commands for automatically generated files such
as Qt's moc (qtnokia.com), The Insight Toolkit’s CABLE wrappers
(public.kitware.com/Cable/HTML/Index.html) and SWIG (www.swig.org) wrapper
generators. These commands are used to generate new source files during the build
process that are in turn compiled into the software.

e The ability to select optional components at configuration time. For example, several of
VTK’s libraries are optional, and CMake provides an easy way for users to select which
libraries are built.

e The ability to automatically generate workspaces and projects from a simple text file.
This can be very handy for systems that have many programs or test cases, each of
which requires a separate project file, typically a tedious manual process to create using
an IDE.

e The ability to easily switch between static and shared builds. CMake knows how to
create shared libraries and modules on all platforms supported. Complicated platform-
specific linker flags are handled, and advanced features like built in run time search
paths for shared libraries are supported on many UNIX systems.

e Automatic generation of file dependencies and support for parallel builds on most
platforms.

When developing cross platform software, CMake provides a number of additional features:

e The ability to test for machine byte order and other hardware specific characteristics.

e A single set of build configuration files that work on all platforms. This avoids the
problem of developers having to maintain the same information in several different
formats inside a project.

e Support for building shared libraries on all platforms that support it.

e The ability to configure files with system dependent information such as the location of
data files and other information. CMake can create header files that contain information
such as paths to data files and other information in the form of #define macros. System
specific flags can also be placed in configured header files. This has advantages over
command line —D options to the compiler because it allows other build systems to use
the CMake built library without having to specify the exact same command line options
used during the build.

The History of CMake 3

1.1 The History of CMake

CMake development began in 1999 as part of the Insight Toolkit (ITK, www.itk.org) funded
by the US National Library of Medicine. ITK is a large software project that works on many
platforms and can interact with many other software packages. To support this, a powerful,
yet easy to use, build tool was required. Having worked with build systems for large projects
in the past, the developers designed CMake to address these needs. Since then CMake has
continuously grown in popularity, with many projects and developers adopting it for its ease
of use and flexibility. Since 1999 CMake has been under active development and has matured
to the point where it is a proven solution for a wide range of build issues. The most telling
example of this is the successful adoption of CMake as the build system of the K Desktop
Environment (KDE), arguably the largest open source software project in existence.

One of the recent additions to CMake is the inclusion of software testing support in the form
of CTest. Part of the process of testing software involves building the software, possibly
installing it, and determining what parts of the software are appropriate for the current system.
This makes CTest a logical extension of CMake as it already has most of this information. In
a similar vein, a new CMake feature is CPack, which is designed to support cross platform
distribution of software. It provides a cross platform approach to creating native installations
for your software, making use of existing popular packages such as NSIS, RPM, Cygwin, and
PackageMaker.

Other recent additions to CMake include support for Apple’s Xcode IDE and support for
Microsoft’s Visual Studio 10. With CMake, once you write your input files you get support
for new compilers and build systems for free because the support for them is built into new
releases of CMake, not tied to your software distribution. Another recent addition to CMake is
support for cross compiling to other operating systems or embedded devices. Many
commands in CMake now properly handle the differences between the host system and the
target platform when cross compiling.

1.2 Why Not Use Autoconf?

Before developing CMake its authors had experience with the existing set of available tools.
Autoconf combined with automake provides some of the same functionality as CMake, but to
use these tools on a Windows platform requires the installation of many additional tools not
found natively on a Windows box. In addition to requiring a host of tools, autoconf can be
difficult to use or extend and impossible for some tasks that are easy in CMake. Even if you
do get autoconf and its required environment running on your system, it generates Makefiles
that will force users to the command line. CMake on the other hand provides a choice,
allowing developers to generate project files that can be used directly from the IDE to which
Windows and Xcode developers are accustomed.

4 Why CMake?

While autoconf supports user specified options, it does not support dependent options where
one option depends on some other property or selection. For example, in CMake you could
have a user option to enable multithreading be dependent on first determining if the user’s
system has multithreading support. CMake provides an interactive user interface, making it
easy for the user to see what options are available and how to set them.

For UNIX users, CMake also provides automated dependency generation that is not done
directly by autoconf. CMake’s simple input format is also easier to read and maintain than a
combination of Makefile.in and configure.in files. The ability of CMake to remember and
chain library dependency information has no equivalent in autoconf/automake.

1.3 Why Not Use JAM, gmake, SCons, or ANT?

Other tools such as ANT, gmake, SCons, and JAM have taken different approaches to solving
these problems and they have helped us to shape CMake. Of the four, gmake, is the most
similar to CMake although it lacks much of the system interrogation that CMake provides.
Qmake's input format is more closely related to a traditional Makefile. ANT, JAM and SCons
are also cross-platform although they do not support generating native project files. They do
break away from the traditional Makefile oriented input with ANT using XML, JAM using its
own language, and SCons using Python. A number of these tools run the compiler directly, as
opposed to letting the system’s build process perform that task. Many of these tools require
other tools such as Python or Java to be installed before they will work.

1.4 Why Not Script It Yourself?

Some projects use existing scripting languages such as Perl or Python to configure build
processes. Although similar functionality can be achieved with systems like this, over-use of
tools can make the build process more of an Easter egg hunt than a simple-to-use build
system. When building your software package users are forced to find and install version
4.3.2 of this, and 3.2.4 of that, before they can even start the build process. To avoid that
problem, it was decided that CMake would require no more tools than the software it was
being used to build would require. At a minimum using CMake requires a C compiler, that
compiler's native build tools, and a CMake executable. CMake was written in C++, requires
only a C++ compiler to build and precompiled binaries are available for most systems.
Scripting it yourself also typically means you will not be generating native Xcode or Visual
Studio workspaces, making Mac and Windows builds limited.

On What Platforms Does CMake Run? 5

1.5 On What Platforms Does CMake Run?

CMake runs on a wide variety of platforms including Microsoft Windows, Apple Mac OS X,
and most UNIX or UNIX-like platforms. At the time of the writing of this book CMake was
tested nightly on the following platforms: Windows 98/2000/XP/Vista/7, AIX, HPUX, IRIX,
Linux, Mac OS X, Solaris, OSF, QNX, CYGWIN, MinGW, and FreeBSD. You can check
www.cmake.org for a current list of tested platforms.

Likewise, CMake supports most common compilers. It supports the GNU compiler on all
CMake supported platforms. Other tested compilers include Visual Studio 6 through 10, Intel
C, SGI CC, Mips Pro, Borland, Sun CC and HP aCC. CMake should work for most UNIX-
style compilers out of the box. If the compiler takes arguments in a strange way, then see the
section Porting CMake to New Platform on page 241 for information on how to customize
CMake for a new compiler.

Chapter 2

Getting Started

2.1 Getting and Installing CMake on Your Computer

Before using CMake you will need to install or build the CMake binaries on your system. On
many systems you may find that CMake is already installed, or is available for install with the
standard package manager tool for the system. Cygwin, Debian, FreeBSD, Mac OS X Fink,
and many others all have CMake distributions. If your system does not have a CMake
package, you can find CMake precompiled for most common architectures at
www.cmake.org. If you do not find binaries for your system precompiled, then you can build
CMake from source. To build CMake you will need a modern C++ compiler.

UNIX and Mac Binary Installations

If your system provides CMake as one of its standard packages, follow your system’s package
installation instructions. If your system does not have CMake, or has an out of date version of
CMake, you can download precompiled binaries from www.cmake.org. The binaries from
www.cmake.org come in the form of a compressed tar file. The tar file contains a README
file and an enclosed tar file. The README file contains a manifest of the files contained in
the enclosed tar file, and some instructions. To install, simply extract the enclosed tar file into
a destination directory (typically /usr/local). However, it can be any directory, and does
not require root privileges for installation.

Windows Binary Installation

For Windows CMake has a NullSoft install file available for download from www.cmake.org.
To install this file, simply run the executable on the windows machine on which you want to
install CMake. You will be able to run CMake from the Start Menu after it is installed.

8 Getting Started

2.2 Building CMake Yourself

If binaries are not available for your system, or if binaries are not available for the version of
CMake you wish to use, you can build CMake from the source code. You can obtain the
CMake source code by following the instructions at www.cmake.org. Once you have the
source code it can be built in two different ways. If you have a version of CMake on your
system you can use it to build other versions of CMake. Generally the current development
version of CMake can always be built from the previous release of CMake. This is how new
versions of CMake are built on most Windows systems.

The second way to build CMake is by running its bootstrap build script. To do this you
change directory into your CMake source directory and type

./bootstrap
make
make install

The make install step is optional since CMake can run directly from the build directory if
desired. On UNIX, if you are not using the GNU C++ compiler, you need to tell the bootstrap
script which compiler you want to use. This is done by setting the environment variable Cxx
before running bootstrap. If you need to use any special flags with your compiler, set the
CXXFLAGS environment variable. For example, on the SGI with the 7.3X compiler, you would
build CMake like this:

cd CMake

(setenv CXX CC; setenv CXXFLAGS "-LANG:std"; ./bootstrap)
make

make install

2.3 Basic CMake Usage and Syntax

Using CMake is simple. The build process is controlled by creating one or more CMakeLists
files (actually CMakeLists.txt but this guide will leave off the extension in most cases) in each
of the directories that make up a project. The CMakeLists files should contain the project
description in CMake's simple language. The language is expressed as a series of commands.
Each command is evaluated in the order that it appears in the CMakeLists file. The commands
have the form

command (args...)

Hello World for CMake 9

where command is the name of the command, and args is a white-space separated list of
arguments. (Arguments with embedded white-space should be double quoted.) CMake is case
insensitive to command names as of version 2.2. So where you see command you could use
COMMAND or Command instead. Older versions of CMake only accepted uppercase commands.

CMake supports simple variables that can be either strings or lists of strings. Variables are
referenced using a ${VAR} syntax. Multiple arguments can be grouped together into a list
using the set command. All other commands expand the lists as if they had been passed into
the command with white-space separation. For example, set (Foo a b c) will result in
setting the variable Foo to a b ¢, and if Foo is passed into another command
command (${Foo}) it would be equivalent to command (a b c). If you want to pass a list of
arguments to a command as if it were a single argument simply double quote it. For example
command ("${Foo}") would be invoked passing only one argument equivalent to command (
"a b c").

System environment variables and Windows registry values can be accessed directly in
CMake. To access system environment variables the syntax $ENV{VAR} is used. CMake can
also reference registry entries in many commands using a syntax of the form
[HKEY CURRENT USER\\Software\\pathl\\path2;key], where the paths are built
from the registry tree and key.

2.4 Hello World for CMake

For starters let us consider the simplest possible CMakeLists file. To compile an executable
from one source file the CMakeLists file would contain two lines:

project (Hello)
add executable (Hello Hello.c)

To build the Hello executable you follow the process described in Running CMake (See
section 2.5) to generate the Makefiles or Microsoft project files. The project command
indicates what the name of the resulting workspace should be and the add executable
command adds an executable target to the build process. That’s all there is to it for this simple
example. If your project requires a few files it is also quite easy, just modify the
add executable line as shown below.

add executable (Hello Hello.c File2.c File3.c Filed.c)

add_executable is just one of many commands available in CMake. Consider the more
complicated example below.

10 Getting Started

cmake minimum required (2.6)
project (HELLO)

set (HELLO SRCS Hello.c File2Z.c File3.c)

if (WIN32)

set (HELLO SRCS ${HELLO SRCS} WinSupport.c)
else ()

set (HELLO SRCS ${HELLO SRCS} UnixSupport.c)
endif ()

add executable (Hello ${HELLO_ SRCS})

look for the Tcl library

find library (TCL LIBRARY
NAMES tcl tcl84 tcl83 tcl82 tcl80
PATHS /usr/lib /usr/local/lib
)

if (TCL LIBRARY)
target link library (Hello ${TCL LIBRARY})
endif ()

In this example the set command is used to group together source files into a list. The if
command is used to add either WinSupport.c or UnixSupport.c to this list based on whether or
not CMake is running on Windows. Finally, the add_executable command is used to build
the executable with the files listed in the variable HELLO SrRCS. The find library
command looks for the Tcl library under a few different names and in a few different paths.
An if command checks if the TCcL LIBRARY was found and if so adds it to the link line for
the Hello executable target. Note the use of the # character to denote a comment line. All
characters from the # to the end of the line are considered to be part of the comment.

2.5 How to Run CMake?

Once CMake has been installed on your system, using it to build a project is easy. There are
two main directories CMake uses when building a project: the source directory and the binary
directory. The source directory is where the source code for your project is located. This is
also where the CMakeLists files will be found. The binary directory is where you want
CMake to put the resulting object files, libraries, and executables. Typically CMake will not
write any files to the source directory, only the binary directory. If you want to you can set the
source and binary directories to be the same. This is known as an in-source build, in contrast
to an out-of-source build where they are different.

How to Run CMake? 11

CMake supports both in-source and out-of-source builds on all operating systems. This means
that you can configure your build to be completely outside of the source code tree which
makes it very easy to remove all of the files generated by a build. Having the build tree differ
from the source tree also makes it easy to support having multiple builds of a single source
tree. This is useful when you want to have multiple builds with different options but just one
copy of the source code. Now let us consider the specifics of running CMake using its Qt
based GUI and command line interfaces.

Running CMake’s Qt Interface

CMake includes a Qt based user interface developed by Clinton Stimpson that can be used on
most platforms, including UNIX, Mac OS X, and Windows. This interface is included in the
CMake source code, but you will need an installation of Qt on your system in order to build it.

« CMake ?.6-patch 4
File Tools Options Help

| ‘Bmwse Source.,.

NakeEir ¥ | BrowseBuid...
P AddEntry | 2 Remove Entry

‘Where is the source code: CIDDCUméntsér‘?d 5éfiiﬁ;;sIKenI r\;{v Documents;’CMake,l‘Cr;'I;g

% .

Press Configure to update and display new values in red, then press Generate to generate selected build files,

Generate | Current Generator: Visual Studio 9 2008]

bit integer ~
| Check size of unsigned short

| Check size of unsigmed short - done ‘
iUsing unsigned short

ECheck if the system is big endian - little endian

| Locking for elf.h

;Locking for elf.h - not found s
éConfi-;'uring done v§

s " WEm |

| Bearching

Figure 1 — Qt based CMake GUI

On Windows the executable is named cmake-gui.exe and should be in your Start menu
under Program Files. There may also be a shortcut on your desktop, or if you built CMake
from source, it will be in the build directory. For UNIX and Mac users the executable is

12 Getting Started

named cmake-gui and it can be found where you installed the CMake executables.A GUI will
appear similar to what is shown in Figure 1. The top two entries are the source code and
binary directories. They allow you to specify where the source code is for what you want to
compile and where the resulting binaries should be placed. You should set these two values
first. If the binary directory you specify does not exist, it will be created for you. If the binary
directory has been configured by CMake before then it will automatically set the source tree.

The middle area is where you can specify different options for the build process. More
obscure variables may be hidden, but can be seen if you select "Advanced View" from the
view pulldown. You can search for values in the middle area by typing all or part of the name
into the Search box. This can be handy for finding specific settings or options in a large
project. The bottom area of the window includes the Configure and Generate buttons as well
as a progress bar and scrollable output window.

Once you have specified the source code and binary directories you should click the
Configure button. This will cause CMake to read in the CMakeLists files from the source
code directory and then update the cache area to display any new options for the project. If
you are running cmake-gui for the first time on this binary directory it will prompt you to
determine what generator you wish to use, as shown in Figure 2. This dialog also presents
options for customizing and tweaking the compilers you wish to use for this build.

< cmake-gui

Specify the generator For this project

alStudic 82008
(%3 Use default native compilers
7% p . N
{_+ Specify native compilers
{3 specify toolchain File For cross-campiling

3 Specify options For cross-compiling

< Back Finish][Cancel J

Figure 2 — Selecting a Generator

After the first configure you can adjust your cache settings if desired and click the Configure
button again. New values that were created by the configure process will be colored red. To
be sure you have seen all possible values you should click Configure until no values are red

How to Run CMake? 13

and you are happy with all the settings. Once you are done configuring, click the Generate
button, this will produce the appropriate files.

It is important that you make sure that your environment is suitable for running cmake-gui. If
you are using an IDE such as Visual Studio then your environment will be setup correctly for
you. If you are using NMake or MinGW then you need to make sure that the compiler can run
from your environment. You can either directly set the required environment variables for
your compiler or use a shell in which they are already set. For example, Microsoft Visual
Studio has an option on the start menu for creating a Visual Studio Command Prompt. This
opens up a command prompt window that has its environment already setup for Visual
Studio. You should run cmake-gui from this command prompt if you want to use NMake
Makefiles. The same approach applies to MinGW, you should run cmake-gui from a MinGW
shell that has a working compiler in its path.

When cmake-gui finishes it will have generated the build files in the binary directory you
specified. If Visual Studio was selected as the generator, a MSVC workspace (or solution) file
is created. This file's name is based on the name of the project you specified in the PROJECT
command at the beginning of your CMakeLists file. For many other generator types,
Makefiles are generated. The next step in this process is to open the workspace with MSVC.
Once open, the project can be built in the normal manner of Microsoft Visual C++. The
ALL BUILD target can be used to build all of the libraries and executables in the package. If
you are using a Makefile build type, then you would build by running make or nmake on the
resulting Makefiles.

Running the ccmake Curses Interface

On most UNIX platforms, if the curses library is supported, CMake provides an executable
called ccmake. This interface is a terminal-based text application that is very similar to the Qt
based GUI. To run ccmake, change directory (cd) to the directory where you want the binaries
to be placed. This can be the same directory as the source code for what we call in-source
builds or it can be a new directory you create. Then run ccmake with the path to the source
directory on the command line. For in-source builds use "." for the source directory. This will
start the text interface as shown in Figure 3 (in this case the cache variables are from VTK
and most are set automatically).

14 Getting Started

EUTLD_EXAMPLES

nelude/pot
usr/lib/python2
home/a

w/software/Deve lop/Toli/T
. ; ome dp/SoftwareDevelop/Tcl/TclTk ‘lib/1ibtks.
14 eak 3 W= chable

Figure 3 - ccmake running on UNIX

Brief instructions are displayed in the bottom of the window. If you hit the "c¢" key, it will
configure the project. You should always configure after changing values in the cache. To
change values, use the arrow keys to select cache entries, and then the enter key to edit them.
Boolean values will toggle with the enter key. Once you have set all the values as you like,
you can hit the "g" key to generate the Makefiles and exit. You can also hit "h" for help, "q"
to quit, and "t" to toggle the viewing of advanced cache entries. Two examples of CMake
usage on the UNIX platform follow for a hello world project called Hello. In the first
example, an in-source build is performed.

cd Hello
ccmake .
make

In the second example, an out-of-source build is performed.

mkdir Hello-Linux
cd Hello-Linux
ccmake ../Hello
make

How to Run CMake? 15

Running CMake from the Command Line

From the command line, CMake can be run as an interactive question and answer session or
as a non-interactive program. To run in interactive mode, just pass the "-i" option to CMake.
This will cause CMake to ask you for a value for each entry in the cache file for the project.
CMake will provide reasonable defaults, just like it does in the GUI and curses based
interfaces. The process stops when there are no longer any more questions to ask. An example
of using the interactive mode of CMake is provided below.

$ cmake -1 -G "NMake Makefiles" ../CMake
- Would you like to see advanced options? [No]:
Please walit while cmake processes CMakelLists.txt files....

Variable Name: BUILD TESTING
Description: Build the testing tree.
Current Value: ON

New Value (Enter to keep current value):

Variable Name: CMAKE INSTALL PREFIX

Description: Install path prefix, prepended onto install
directories.

Current Value: C:/Program Files/CMake

New Value (Enter to keep current value):

Please wait while cmake processes CMakelLists.txt files....

CMake complete, run make to build project.

Using CMake to build a project in non-interactive mode is a simple process if the project has
few or no options. For larger projects like VTK, using ccmake, cmake -1i, or cmake-gui is
recommended. To build a project with a non-interactive CMake, first change directory to
where you want the binaries to be placed. For an in-source build you then run cmake . and
pass in any options using the -D flag. For out-of-source builds the process is the same except
you run cmake and also provide the path to the source code as its argument. Then type make
and your project should compile. Some projects will have install targets as well, you can type
make install to install them.

Specifying the Compiler to CMake

On some systems you may have more than one compiler to choose from or your compiler
may be in a non-standard place. In these cases you will need to specify to CMake where your
desired compiler is located. There are three ways to specify this; the generator can specify the
compiler, an environment variable can be set, or a cache entry can be set. Some generators are
tied to a specific compiler, for example the Visual Studio 6 generator always uses the

16 Getting Started

Microsoft Visual Studio 6 compiler. For Makefile based generators CMake will try a list of
usual compilers until it finds a working compiler. The list can be found in the files:

Modules/CMakeDeterminCCompiler.cmake and
Modules/CMakeDetermineCXXCompiler.cmake

The lists can be preempted with environment variables that can be set before CMake is run.
The cC environment variable specifies the C compiler while cxx specifies the C++ compiler.
You can specify the compilers directly on the command line by using -
DCMAKE CXX COMPILER=cl for example. If those are not set, CMake will try the following
list of compilers:

ct++ g++ CC aCC cl bcc xl1C.

Once CMake has been run and picked a compiler, you can change the selection by changing
the cache entries CMAKE CXxX COMPILER and CMAKE C COMPILER, although this is not
recommended. The problem with doing this is that the project you are configuring may have
already run some tests on the compiler to determine what it supports. Changing the compiler
does not normally cause these tests to be rerun which can lead to incorrect results. If you must
change the compiler, start over with an empty binary directory. The flags for the compiler and
the linker can also be changed by setting environment variables. Setting ILDFLAGS will
initialize the cache values for link flags, while CXXFLAGS and CFLAGS will initialize
CMAKE CXX FLAGS and CMAKE C FLAGS respectively.

Dependency Analysis

CMake has powerful built-in dependency analysis capabilities for C and C++ source code
files. CMake also has limited support for Fortran and Java dependencies. Since Integrated
Development Environments (IDEs) support and maintain dependency information, CMake
skips this step for those build systems. However, Makefiles with a make program do not know
how to automatically compute and keep dependency information up-to-date. For these builds,
CMake automatically computes dependency information for C, C++ and Fortran files. Both
the generation and maintenance of these dependencies are automatically done by CMake.
Once a project is initially configured by CMake, users only need to run make, and CMake
does the rest of the work. CMake’s dependencies fully support parallel builds for
multiprocessor systems.

Although users do not need to know how CMake does this work, it may be useful to look at
the dependency information files for a project. This information for each target is stored in
four files called depend.make, flags.make, build.make, and DependInfo.cmake.
depend.make stores the depend information for all the object files in the directory.
flags.make contains the compile flags used for the source files of this target. If they change
then the files will be recompiled. Dependinfo.cmake is used to keep the dependency

Editing CMakelLists Files 17

information up-to-date and contains information about what files are part of the project and
what languages they are in. Finally, the rules for building the dependencies are stored in
build.make. If a dependency is out of date then all of the dependencies for that target will
be recomputed, keeping the dependency information current.

2.6 Editing CMakelLists Files

CMakeLists files can be edited in almost any text editor. Some editors, such as Notepad-++,
come with CMake syntax highlighting and indentation support built in. For editors such as
Emacs or Vim CMake includes indentation and syntax highlighting modes. These can be
found in the Docs directory of the source distribution, or downloaded from the CMake web
site. The file cmake-mode.el is the Emacs mode, and cmake-indent.vim and cmake-
syntax.vim are used by Vim. Within Visual Studio the CMakeLists files are listed as part of
the project and you can edit them simply by double clicking on them. Within any of the
supported generators (Makefiles, Visual Studio, etc) if you edit a CMakeLists file and rebuild,
there are rules that will automatically invoke CMake to update the generated files (e.g.
Makefiles or project files) as required. This helps to assure that your generated files are
always in sync with your CMakeLists files.

Since CMake computes and maintains dependency information, the CMake executables must
always be available (though they don’t have to be in your PATH) when make or an IDE is
being run on CMake generated files. This means that if a CMake input file changes on disk,
your build system will automatically re-run CMake and produce up-to-date build files. For
this reason you generally should not generate Makefiles or projects with CMake and move
them to another machine that does not have CMake installed.

2.7 Setting Initial Values for CMake

While CMake works well in an interactive mode, sometimes you will need to setup cache
entries without running a GUI. This is common when setting up nightly dashboards or if you
will be creating many build trees with the same cache values. In these cases the CMake cache
can be initialized in two different ways. The first way is to pass the cache values on the
CMake command line using -DCACHE VAR:TYPE=VALUE arguments. For example, consider
the following nightly dashboard script for a UNIX machine:

#!/bin/tcsh
cd ${HOME}
wipe out the old binary tree and then create it again

rm —-rf Foo-Linux
mkdir Foo-Linux

18 Getting Started

cd Foo-Linux

run cmake to setup the cache
cmake -DBUILD TESTING:BOOL=ON <etc...> ../Foo

generate the dashboard
ctest -D Nightly

The same idea can be used with a batch file on Windows. The second way is to create a file to
be loaded using CMake's -C option. In this case instead of setting up the cache with -D
options it is done though a file that is parsed by CMake. The syntax for this file is standard
CMakelLists syntax and it is typically just a series of set commands such as:

#Build the vtkHybrid kit.
set (VTK USE _HYBRID ON CACHE BOOL "doc string")

In some cases there might be an existing cache and you want to force the cache values to be
set a certain way. For example say you want to turn Hybrid on even if the user has previously
run CMake and turned it off. Then you can do:

#Build the vtkHybrid kit always.
set (VIK _USE HYBRID ON CACHE BOOL "doc" FORCE)

Another option is that you want to set and then hide options so the user will not be tempted to
adjust them later on. This can be done using the following commands:

#Build the vtkHybrid kit always and don’t distract
#the user by showing the option.
set (VTK USE HYBRID ON CACHE INTERNAL "doc" FORCE)
mark as advanced (VTK USE HYBRID)

You might be tempted to edit the cache file directly, or to "initialize" a project by giving it an
initial cache file. This may not work and could cause additional problems in the future. First,
the syntax of the CMake cache is subject to change. Second, cache files have full paths in
them that make them unsuitable for moving between binary trees. So if you want to initialize
a cache file use one of the two standard methods described above.

Building Your Project 19

2.8 Building Your Project

After you have run CMake your project will be ready to be built. If your target generator is
based on Makefiles then you can build your project by changing directory to your binary tree
and typing make (or gmake or nmake as appropriate). If you generated files for an IDE such
as Visual Studio, you can start your IDE, load the project files into it, and build as you
normally would.

Another option is to use CMake’s —build option from the command line. This option is simply
a convenience that allows you to build your project from the command line, even if that
requires launching an IDE. The command line options for —build include:

Usage: cmake --build <dir> [options] [-- [native-options]]
Options:
<dir> = Project binary directory to be built.
--target <tgt> = Build <tgt> instead of default targets.
~--config <cfg> = For multi-configuration tools, choose <cfg>.
--clean-first = Build target 'clean' first, then build.
(To clean only, use —--target 'clean'.)

- = Pass remaining options to the native tool.

So even if you are using Visual Studio as your generator you can type the following to build
your project from the command line if you wish.

cmake —--build <your binary dir>

That is all there is to installing and running CMake for simple projects. In the following
chapters we will consider CMake in more detail and how to use it on more complex software
projects.

Chapter 3

Key Concepts

3.1 Main Structures

This chapter provides an introduction to CMake's key concepts. As you start working with
CMake you will run into a variety of concepts such as targets, generators, and commands. In
CMake these concepts are implemented as C++ classes and are referenced in many of
CMake's commands. Understanding these concepts will provide you with the working
knowledge you need to create effective CMakeLists files.

Before going into detail about CMake’s classes it is worth understanding their basic
relationships. At the lowest level there are source files. These correspond to typical C or C++
source code files. Source files are combined into targets. A target is typically an executable or
library. A directory represents a directory in the source tree and typically has a CMakeLists
file and one or more targets associated with it. Every directory has a local generator that is
responsible for generating the Makefiles or project files for that directory. All of the local
generators share a common global generator that oversees the build process. Finally, the
global generator is created and driven by the cmake class itself.

Figure 4 shows the basic class structure of CMake. We will now consider CMake's concepts
in a bit more detail. CMake's execution begins by creating an instance of the cmake class and
passing the command line arguments to it. This class manages the overall configuration
process and holds information that is global to the build process such as the cache values. One
of the first things the cmake class does is to create the correct global generator based on the
user's selection of what generator to use (such as Visual Studio 10, Borland Makefiles, or
UNIX Makefiles). At this point the cmake class passes control to the global generator it
created by invoking the configure and generate methods.

22

Key Concepts

cmake
e controls the cmake process
e can be created and used in
various GUIs

Has one

cmGlobalGenerator
e abstract base class
e child classes responsible for
platform-specific build process

A

cmGlobalUnixMakefileGenerator
cmGlobalVisualStudio6Generator
cmGlobalVisualStudio7Generator

Derive from

Has many

\ 4

cmLocalGenerator

cmLocalUnixMakefileGenerator
cmLocalVisualStudio6Generator
cmLocalVisualStudio7Generator

e abstract base class Derive from
e child classes responsible for
latform- ific build fil
pea:]e(r);?orslpem e pune e e¢mCommand
g e abstract base class
e child classes responsible for
implementing all commands in
Has one CMake.
v
cmMakefile Derive fi
e Stores all of the information parsed crive rom
from a CMakeLists.txt file.
o List of targets and variables cmRemoveCommand
e Optional flags cmSetCommand
e List of libraries cmAddTestCommand
[]

List of include paths
Parses CMakeLists.txt files

Figure 4 - CMake Internals

Main Structures 23

The global generator is responsible for managing the configuration and generation of all of
the Makefiles (or project files) for a project. In practice most of the work is actually done by
local generators which are created by the global generator. One local generator is created for
each directory of the project that is processed. So while a project will have only one global
generator it may have many local generators. For example, under Visual Studio 7 the global
generator creates a solution file for the entire project while the local generators create a
project file for each target in their directory.

In the case of the "Unix Makefiles" generator, the local generators create most of the
Makefiles and the global generator simply orchestrates the process and creates the main top-
level Makefile. Implementation details vary widely among generators. The Visual Studio 6
generators make use of .dsp and .dsw file templates and perform variable replacements on
them. The generators for Visual Studio 7 and later directly generate the XML output without
using any file templates. The Makefile generators including UNIX, NMake, Borland, etc use a
set of rule templates and replacements to generate their Makefiles.

Figure 5 - Sample Directory Tree

Each local generator has an instance of the class cmMakefile, cmMakefile is where the results
of parsing the CMakeLists files are stored. Specifically, for each directory in a project there
will be a single cnmMakefile instance which is why the cmMakefile class is often referred to as
the directory. This is clearer for build systems that do not use Makefiles. That instance will
hold all of the information from parsing that directory's CMakeLists file (see Figure 5). One
way to think of the cmMakefile class is as a structure that starts out initialized with a few
variables from its parent directory, and is then filled in as the CMakeLists file is processed.
Reading in the CMakeLists file is simply a matter of CMake executing the commands it finds
in the order it encounters them.

Each command in CMake is implemented as a separate C++ class, and has two main parts.
The first part of a command is the InitialPass method. The InitialPass method receives the
arguments and the cmMakefile instance for the directory currently being processed, and then

24 Key Concepts

performs its operations. In the case of the set command, it processes its arguments and if the
arguments are correct it calls a method on the cmMakefile to set the variable. The results of
the command are always stored in the cmMakefile instance. Information is never stored in a
command. The last part of a command is the FinalPass. The FinalPass of a command is
executed after all commands (for the entire CMake project) have had their InitialPass
invoked. Most commands do not have a FinalPass, but in some rare cases a command must do
samething with global information that may not be available during the initial pass.

Once all of the CMakeLists files have been processed the generators use the information
collected into the cmMakefile instances to produce the appropriate files for the target build
system (such as Makefiles).

3.2 Targets

Now that we have discussed the overall process of CMake, let us consider some of the key
items stored in the cmMakefile instance. Probably the most important item is targets.
Targets represent executables, libraries, and utilities built by CMake. Every add library,
add _executable, and add_custom target command creates a target. For example, the
following command will create a target named foo that is a static library, with fool.c and
foo2.c as source files.

add_library (foo STATIC fool.c foo2.c)

The name foo is now available for use as a library name everywhere else in the project, and
CMake will know how to expand the name into the library when needed. Libraries can be
declared to be of a particular type such as STATIC, SHARED, MODULE, or left undeclared.
STATIC indicates that the library must be built as a static library. Likewise SHARED indicates
it must be built as a shared library. MODULE indicates that the library must be created so that it
can be dynamically loaded into an executable. On many operating systems this is the same as
SHARED, but on other systems such as Mac OS X it is different. If none of these options are
specified this indicates that the library could be built as either shared or static. In that case
CMake uses the setting of the variable BUILD SHARED LIBS to determine if the library
should be sHARED or sTATIC. If it is not set, then CMake defaults to building static libraries.

Likewise executables have some options. By default an executable will be a traditional
console application that has a main (int argc, const char*argv[]). If WIN32 is
specified after the executable name then the executable will be compiled as a MS Windows
executable and the operating system will call WinMain instead of main at startup. WIN32 has
no effect on non-Windows systems.

In addition to storing their type, targets also keep track of general properties. These properties
can be set and retrieved using the set target properties and get target property

Source Files 25

commands, or the more general set property and get property commands. The most
commonly used property is LINK FLAGS, which is used to specify link flags for a specific
target. Targets store a list of libraries that they link against which are set using the
target link libraries command. Names passed into this command can be libraries, full
paths to libraries, or the name of a library from an add 1library command. They also store
the link directories to use when linking, the install location for the target, and custom
commands to execute after linking.

For each library CMake creates, it keeps track of all the libraries on which that library
depends. Since static libraries do not link to the libraries on which they depend, it is important
for CMake to keep track of the libraries so they can be specified on the link line of the
executable being created. For example,

add library (foo foo.cxx)
target link libraries (foo bar)

add executable (foobar foobar.cxx)
target link libraries (foobar foo)

This will link the libraries foo and bar into the executable foobar even, although only foo was
explicitly linked into foobar. With shared or DLL builds this linking is not always needed, but
the extra linkage is harmless. For static builds this is required. Since the foo library uses
symbols from the bar library, foobar will most likely also need bar since it uses foo.

3.3 Source Files

The source file structure is in many ways similar to a target. It stores the filename, extension,
and a number of general properties related to a source file. Like targets you can set and get
properties using set source files properties and get source file property, or
the more generic versions. The most common properties include:

COMPILE_FLAGS

Compile flags specific to this source file. These can include source specific —D and —
I flags.

GENERATED

The GENERATED property indicates that the source file is generated as part of the
build process. In this case CMake will treat it differently for computation of
dependencies because the source file may not exist when CMake is first run.

26 Key Concepts

OBJECT DEPENDS

Adds additional files on which this source file should depend. CMake automatically
performs dependency analysis to determine the usual C, C++ and Fortran
dependencies. This parameter is used rarely in cases where there is an
unconventional dependency or the source files do not exist at dependency analysis
time.

ABSTRACT
WRAP_EXCLUDE

CMake doesn't directly use these properties. Some loaded commands and extensions
to CMake look at these properties to determine how and when to wrap a C++ class
into languages such as Tcl, Python, etc.

3.4 Directories, Generators, Tests, and Properties

In addition to targets and source files you may find yourself occasionally working with other
classes such as directories, generators, and tests. Normally such interactions take the shape of
setting or getting properties from these objects. All of these classes have properties associated
with them, as do source files and targets. A property is a key-value pair attached to a specific
object such as a target. The most generic way to access properties is through the
set property and get property commands. These commands allow you to set or get a
property from any class in CMake that has properties. Some of the properties for targets and
source files have already been covered. Some useful properties for a directory include:

ADDITIONAL_MAKE_CLEAN_FILES

This property specifies a list of additional files that will be cleaned as a part of the
"make clean" stage. By default CMake will clean up any generated files that it knows
about, but your build process may use other tools that leave files behind. This
property can be set to a list of those files so that they also will be properly cleaned

up.

EXCLUDE _FROM_ALL

This property indicates if all the targets in this directory and all sub directories
should be excluded from the default build target. If it is not, then with a Makefile for
example typing make will cause these targets to be built as well. The same concept
applies to the default build of other generators.

LISTFILE_STACK

This property is mainly useful when trying to debug errors in your CMake scripts. It
returns a list of what list files are currently being processed, in order. So if one
CMakelLists file does an include command then that is effectively pushing the
included CMakelLists file onto the stack.

Variables and Cache Entries 27

A full list of properties supported in CMake can be obtained by running cmake with the -
help-property-list option. The generators and directories are automatically created for
you as CMake processes your source tree.

3.5 Variables and Cache Entries

CMakeLists files use variables much like any programming language. Variables are used to
store values for later use, and can be a single value such as "ON" or "OFF", or they can
represent a list such as (/usr/include /home/foo/include /usr/local/include).
A number of useful variables are automatically defined by CMake and are discussed in
Appendix A - Variables.

Variables in CMake are referenced using a ${VARIABLE} notation, and they are defined in
the order of execution of the set commands. Consider the following example:

FOO is undefined

set (FOO 1)
FOO is now set to 1

set (FOO 0)
FOO 1s now set to O

This may seem straightforward, but consider the following example:

set (FOO 1)

if (S{FOO} LESS 2)

set (FOO 2)
else (${FOO} LESS 2)
set (FOO 3)

endif (${FOO} LESS 2)

Clearly the if statement is true, which means that the body of the if statement will be
executed. That will set the variable FOO to 2, and so when the else statement is encountered
F0O will have a value of 2. Normally in CMake the new value of FOO would be used, but the
else statement is a rare exception to the rule and always refers back to the value of the
variable when the if statement was executed. So in this case the body of the e1se clause will
not be executed. To further understand the scope of variables consider this example:

28 Key Concepts

set (foo 1)

process the dirl subdirectory
add subdirectory (dirl)

include and process the commands in filel.cmake
include (filel.cmake)

set (bar 2)
process the dir2 subdirectory
add subdirectory (dir2)

include and process the commands in file2.cmake
include (file2.cmake)

In this example because the variable foo is defined at the beginning, it will be defined while
processing both dirl and dir2. In contrast bar will only be defined when processing dir2.
Likewise foo will be defined when processing both filel.cmake and file2.cmake, whereas
bar will only be defined while processing file2.cmake.

Variables in CMake have a scope that is a little different from most languages. When you set
a variable it is visible to the current CMakeLists file or function, as well as any subdirectory’s
CMakeLists files, any functions or macros that are invoked, and any files that are included
using the INCLUDE command. When a new subdirectory is processed (or a function called) a
new variable scope is created and initialized with the current value of all variables in the
calling scope. Any new variables created in the child scope, or changes made to existing
variables, will not impact the parent scope. Consider the following example:

function (foo)

message (${test}) # test is 1 here

set (test 2)

message (${test}) # test is 2 here, but only in this scope
endfunction ()

set (test 1)
foo ()
message (${test}) # test will still be 1 here

In some cases you might want a function or subdirectory to set a variable in its parent’s scope.
This is one way for CMake to return a value from a function, and it can be done by using the
PARENT SCOPE option with the set command. We can modify the prior example so that the
function foo changes the value of test in its parent’s scope as follows:

Variables and Cache Entries 29

function (foo)

message ($S{test}) # test is 1 here

set (test 2 PARENT SCOPE)

message (${test}) # test still 1 in this scope
endfunction ()

set (test 1)
- foo()
message (${test}) # test will now be 2 here

Variables can also represent a list of values. In these cases when the variable is expanded it
will be expanded into multiple values. Consider the following example:

set a list of items
set (items to buy apple orange pear beer)

loop over the items
foreach (item ${items to buy})

message ("Don’t forget to buy one ${item}")
endforeach ()

In some cases you might want to allow the user building your project to set a variable from
the CMake user interface. In that case the variable must be a cache entry. Whenever CMake is
run it produces a cache file in the directory where the binary files are to be written. The values
of this cache file are displayed by the CMake user interface. There are a few purposes of this
cache. The first is to store the user's selections and choices, so that if they should run CMake
again they will not need to reenter that information. For example, the option command
creates a Boolean variable and stores it in the cache.

option (USE JPEG "Do you want to use the jpeg library")

The above line would create a variable called USE_JPEG and put it into the cache. That way
the user can set that variable from the user interface and its value will remain in case the user
should run CMake again in the future. To create a variable in the cache you can use
commands like option, £ind file, or you can use the standard set command with the
CACHE option.

set (USE _JPEG ON CACHE BOOL "include jpeg support?")

When you use the cache option you must also provide the type of the variable and a
documentation string. The type of the variable is used by the GUI to control how that variable

30 Key Concepts

is set and displayed. Variable types include BOOL, PATH, FILEPATH, and STRING. The
documentation string is used by the GUI to provide online help.

The other purpose of the cache is to store key variables that are expensive to determine. These
variables may not be visible or adjustable by the user. Typically these values are system
dependent variables such as CMAKE WORDS BIGENDIAN, which require CMake to compile
and run a program to determine their value. Once these values have been determined, they are
stored in the cache to avoid having to recompute them every time CMake is run. Generally
CMake tries to limit these variables to properties that should never change (such as the byte
order of the machine you are on). If you significantly change your computer, either by
changing the operating system, or switching to a different compiler, you will need to delete
the cache file (and probably all of your binary tree's object files, libraries, and executables).

Variables that are in the cache also have a property indicating if they are advanced or not. By
default when a CMake GUI is run (such as ccmake or cmake-gui) the advanced cache entries
are not displayed. This is so that the user can focus on the cache entries that they should
consider changing. The advanced cache entries are other options that the user can modify, but
typically will not. It is not unusual for a large software project to have fifty or more options,
and the advanced property lets a software project divide them into key options for most users
and advanced options for advanced users. Depending on the project there may not be any non-
advanced cache entries. To make a cache entry advanced the mark as advanced command
is used with the name of the variable (a.k.a. cache entry) to make advanced.

In some cases you might want to restrict a cache entry to a limited set of predefined options.
You can do this by setting the STRINGS property on the cache entry. The following
CMakeLists code illustrates this by creating a property named CRYPTOBACKEND as usual, and
then setting the STRINGS property on it to a set of three options.

set (CRYPTORACKEND "OpenSSL"™ CACHE STRING
"Select a cryptography backend")
set property (CACHE CRYPTOBACKEND PROPERTY STRINGS
"OpenSSL" "LibTomCrypt" "LibDES™)

When cmake-gui is run and the user selects the CRYPTOBACKEND cache entry, they will be
presented with a pulldown to select which option they want, as shown in Figure 6.

Variables and Cache Entries 31

90730,

File Tools Options Help

‘Where is the source code: f’C:,i‘Dnlcurne’r}Fs‘ and E;el;txng54'r(arx;’fv{sl D0cpr(\'uents;’CMalre,l"‘Test : N » ‘E‘.ruwse Source...
Wwhere ko build the binaries: ‘;jJiE‘CICEIT’;EDF:S ::md Sé@tihgéj'kf?n,l’mianurngnts!Cfﬂ:a/kéfTesE) o B : B ™ | Browse Build...
Search: | o ‘ ')] ‘ ‘ - ‘ 1:Sirnp|‘e:\"‘iew v H}B Add Entry | r;&‘{ Remove Ertry]
Name T e ‘ -
TCMAKE_BACKMWARDS_COMPATIBILITY 2.4

(CMAKE_INSTALL_PREFI= Ci/Program Files/Project
: CEEME . R CpenzsL S -
|EXECUTABLE _COUTPUT_PATH

{LIBRARY _QUTPLIT_PA&ATH

Press Configure to update and display new values in red, then press Generate ko generate selected build Files,

Configure J [Generate | Current Generator: Yisual Studio @ 2008 X J

| Configqaring dons

Figure 6 — Cache Value Options in cmake-gui

A few final points should be made concerning variables and their interaction with the cache.
If a variable is in the cache, it can still be overridden in a CMakeLists file using the set
command without the CACHE option. Cache values are checked only if the variable is not
found in the current cmMakefile instance before CMakeLists file processing begins. The
set command will set the variable for processing the current CMakeLists file (and
subdirectories as usual) without changing the value in the cache.

assume that FOO is set to ON in the cache

set (FOO OFF)
sets foo to OFF for processing this CMakeLists file
and subdirectories; the value in the cache stays ON

Once a variable is in the cache, its "cache" value cannot normally be modified from a
CMakelL.ists file. The reasoning behind this is that once CMake has put the variable into the
cache with its initial value, the user may then modify that value from the GUI. If the next
invocation of CMake overwrote their change back to the set value, the user would never be
able to make a change that CMake wouldn’t overwrite. So a set (FOO ON CACHE BOOL
"doc") command will typically only do something when the cache doesn't have the variable
in it. Once the variable is in the cache, that command will have no effect.

32 Key Concepts

In the rare event that you really want to change a cached variable's value you can use the
FORCE option in combination with the CACHE option to the set command. The FORCE option
will cause the set command to override and change the cache value of a variable.

3.6 Build Configurations

Build configurations allow a project to be built in different ways for debug, optimized, or any
other special set of flags. CMake supports, by default, Debug, Release, MinSizeRel, and
RelWithDebInfo configurations. Debug has the basic debug flags turned on. Release has the
basic optimizations turned on. MinSizeRel has the flags that produce the smallest object code,
but not necessarily the fastest code. RelWithDebInfo builds an optimized build with debug
information as well.

CMake handles the configurations in slightly different ways depending on what generator is
being used. The conventions of the native build system are followed when possible. This
means that configurations impact the build in different ways when using Makefiles versus
using Visual Studio project files.

The Visual Studio IDE supports the notion of Build Configurations. A default project in
Visual Studio usually has Debug and Release configurations. From the IDE you can select
build Debug, and the files will be built with Debug flags. The IDE puts all of the binary files
into directories with the name of the active configuration. This brings about an extra
complexity for projects that build programs that need to be run as part of the build process
from custom commands. See the CMAKE CFG INTDIR variable and the custom commands
section for more information about how to handle this issue. The variable
CMAKE CONFIGURATION TYPES is used to tell CMake which configurations to put in the
workspace.

With Makefile based generators, only one configuration can be active at the time CMake is
run, and it is specified by the CMAKE BUILD TYPE variable. If the variable is empty then no
flags are added to the build. If the variable is set to the name of a configuration, then the
appropriate variables and rules (such as CMAKE CXX FLAGS <ConfigName>) are added to
the compile lines. Makefiles do not use special configuration subdirectories for object files.
To build both debug and release trees, the user is expected to create multiple build directories
using the out of source build feature of CMake, and to set the CMAKE BUILD TYPE to the
desired selection for each build. For example,

With source code in the directory MyProject

to build MyProject-debug create that directory, cd into it and
(ccmake ../MyProject -DCMAKE BUILD TYPE:STRING=Debug)

the same idea is used for the release tree MyProject-release
(ccmake ../MyProject -DCMAKE BUILD TYPE:STRING=Release)

CMake Syntax 33

Writing CMakelLists Files

This chapter will cover the basics of writing effective CMakeLists files for your software. It
will cover all of the basic commands and issues you will need to handle most projects. It will
also discuss how to convert existing UNIX or Windows projects into CMakeLists files. While
CMake can handle extremely complex projects, for most projects you will find this chapter’s
contents will tell you all you need to know. CMake is driven by the CMakeLists.txt files
written for a software project. The CMakeLists files determine everything from what options
to put into the cache, to what source files to compile. In addition to discussing how to write a
CMakelLists file this chapter will also cover how to make them robust and maintainable. The
basic syntax of a CMakeLists.txt file and key concepts of CMake have already been discussed
in chapters 2 and 3. This chapter will expand on those concepts and introduce a few new ones.

4.1 CMake Syntax

CMakeLists files follow a simple syntax consisting of comments, commands, and white
space. A comment is indicated using the # character and runs from that character until the end
of the line. A command consists of the command name, opening parenthesis, white space
separated arguments and a closing parenthesis. All white space (spaces, line feeds, tabs) are
ignored except to separate arguments. Anything within a set of double quotes is treated as one
argument as is typical for most languages. The backslash can be used to escape characters
preventing the normal interpretation of them. The subsequent examples in this chapter will
help to clear up some of these syntactic issues. You might wonder why CMake decided to
have its own language instead of using an existing one such as Python, Java, or Tcl. The main
reason is that we did not want to make CMake require an additional tool to run. By requiring
one of these other languages all users of CMake would be required to have that language
installed, and potentially a specific version of that language. This is on top of the language

34 Writing CMakelLists Files

extensions that would be required to do some of the CMake work, for both performance and
capability reasons.

4.2 Basic Commands

While the previous chapters have already introduced many of the basic commands for
CMakelLists files, this chapter will review and expand on them. The first command the top-
level CMakeLists file should have is the PROJECT command. This command both names the
project and optionally specifies what languages will be used by it. Its syntax is as follows:

project (projectname [CXX] [C] [Java] [NONE])

If no languages are specified then CMake defaults to supporting C and C++. If the NONE
language is passed then CMake includes no language specific support. Whenever C++
language support is specified then C language support will also be loaded.

For each project command that appears in a project, CMake will create a top level IDE project
file. The project will contain all targets that are in the CMakeLists.txt file, and any of its
subdirectories as specified by the add subdirectory command. If the
EXCLUDE_FROM ALL option is used in the add subdirectory command, then the
generated project will not appear in the top level Makefile or IDE project file. This is useful
for generating sub projects that do not make sense as part of the main build process. Consider
that a project with a number of examples could use this feature to generate the build files for
each example with one run of CMake, but not have the examples built as part of the normal
build process.

The set command is probably one of the most used commands since it is used for defining
and modifying variables and lists. Complimenting the set command are the remove and
separate arguments commands. The remove command can be used to remove a value
from a variable list, while the separate arguments command can be used to take a single
variable value (as opposed to a list) and break it into a list based on spaces.

The add executable and add library commands are the main commands for defining
what libraries and executables to build, and what source files comprise them. For Visual
Studio projects the source files will show up in the IDE as usual, but any header files the
project uses will not be there. To have the header files show up as well you simply add them
to the list of source files for the executable or library. This can be done for all generators. Any
generators that do not use the header files directly (such as Makefile based generators) will
simply ignore them.

Flow Control 35

4.3 Flow Control

In many ways writing a CMakeLists file is like a writing a program in a simple language.
Like most languages CMake provides flow control structures to help you along your way.
CMake provides three flow control structures;

e conditional statements (e.g. i f)
e looping constructs (e.g. foreach and while)
e procedure definitions (e.g. macro and function)

First we will consider the i £ command. In many ways the i f command in CMake is just like
the if command in any other language. It evaluates its expression and based on that either
executes the code in its body or optionally the code in the else clause. For example:

if (FOO0)

do something here
else (FOO)

do something else
endif (FOO)

One difference you might notice is that the conditional of the i f statement is repeated in the
else and endif clauses. This is optional and in this book you will see examples of both
styles. You could just as well choose to write:

if (FOO0)

do something here
else ()

do something else
endif ()

When you include conditionals in the else and endif clause they are used to provide
additional error checking. As such they must exactly match the original conditional of the if
statement. The following code would not work:

set (FOO 1)

if (${FOO0})
do something
endif (1)
ERROR, it doesn't match the original if conditional

36 Writing CMakelLists Files

Fortunately CMake provides verbose error messages in the case where an 1if statement is not
properly matched with an endif. This shouid help you to track down any problems with
matching conditionals. Providing the conditionals on the e1se and endi £ commands also has
the added benefit of helping to document your CMakeLists file. With a long if statement it
can be easy to lose track of what if statement the endif is closing. if statements can be
nested to any depth, and any command can be used inside of an i f or else clause.

As with many other languages, CMake supports elseif so that you can sequentially test for
multiple conditions. For example:

if (MSVC80)
¥ do something here
elseif (MSVC90)
do something else
“elseif (APPLE)
do something else
endif ()

The if command has a limited set of operations that you can use. It does not support general
purpose C style expressions such as ${FOO} && ${BAR} || ${FUBAR}, instead it supports
a limited subset of expressions that should work for most cases. Specifically i £ supports:
if (variable)

True if the variable's value is not empty, 0, FALSE, OFF, or NOTFOUND.

if (NOT variable)
True if the variable's value is empty, 0, FATLSE, OFF, or NOTFOUND

if (variablel AND variable2)

True if both variables would be considered true individually.

if (variablel OR variable2)

True if either variable would be considered true individually.

if (COMMAND command-name)

True if the given name is a command that can be invoked.

if (DEFINED variable)

True if the given variable has been set, regardless of what value it was set to.

Flow Control 37

if (EXISTS file-name)
if (EXISTS directory-name)
True if the named file or directory exists.

if (IS_DIRECTORY name)
if IS_ABSOLUTE name)

True if the given name is a directory, or absolute path respectively.

if (namel IS NEWER THAN name2)

True if the file specified by namel has a more recent modification time than the file
specified by name2.

if (variable MATCHES regex)
if (string MATCHES regex)

True if the given string or variable's value matches the given regular expression.

Options such as EQUAT, LESS, and GREATER are available for numeric comparisons.
STRLESS, STREQUAL, and STRGREATER can be used for lexicographic comparisons.
VERSION LESS, VERSION EQUAL, and VERSION GREATER can be used to compare versions
of the form major[.minor[.patch[.tweak]]]. Similar to C and C++ these expressions
can be combined to create more powerful conditionals. For example consider the following
conditionals:

if ((1 LESS 2) AND (3 LESS 4))
message ("sequence of numbers")
endif ()

if (1 AND 3 AND 4)
message ("series of true values")
i endif (1 AND 3 AND 4)

if (NOT O AND 3 AND 4)
message ("a false value")
endif (NOT O AND 3 AND 4)

if (0 OR 3 AND 4)
message ("or statements")
endif (0 OR 3 AND 4)

if (EXISTS ${PROJECTisOURCEiDIR}/Help.txt AND COMMAND IF)
message ("Help exists")
endif (EXISTS ${PROJECT_SOURCE_DIR}/Help.txt AND COMMAND IF)

38 Writing CMakeLists Files

set (fooba 0)

if (NOT DEFINED foobar)
message ("foobar is not defined")
endif (NOT DEFINED foobar)

if (NOT DEFINED fooba)
message ("fooba not defined")
endif (NOT DEFINED fooba)

In compound if statements there is an order of precedence that specifies the order that the
operations will be evaluated. For example, in the statement below, the NOT will be evaluated
first then the AND, not the other way around. Thus the statement will be false and the message
never printed. Had the AND been evaluated first the statement would be true.

if (NOT 0 AND 0)
message ("This line is never executed")
endif (NOT 0 AND 0)

CMake defines the order of operations such that parenthetical groups are evaluated first, then
EXISTS, COMMAND, DEFINED and similar prefix operators are evaluated, then any EQUAL,
LESS, GREATER, STREQUAL, STRLESS, STRGREATER, and MATCHES operators. The nNoOT
operators are evaluated next, and finally the AND and OR expressions will be evaluated. With
operations that have the same level of precedence, such as AND and OR, they will be evaluated
from left to right. Once all of the expressions have been evaluated the final result will be
tested to see if it is true or false. CMake considers any of the following values to be true: ON,
1, YES, TRUE, Y. The following values are all considered to be false: OFF, 0, NO, FALSE, N,
NOTFOUND, *-NOTFOUND, IGNORE. This test is case insensitive so true, True, and TRUE are
all treated the same.

Now let us consider the other flow control commands. The foreach, while, macro, and
function commands are the best way to reduce the size of your CMakelLists files and keep
them maintainable. The foreach command enables you to execute a group of CMake
commands repeatedly on the members of a list. Consider the following example adapted from
VTK:

foreach (tfile
TestAnisotropicDiffusion2D
TestButterworthLowPass
TestButterworthHighPass
TestCityBlockDistance

Flow Control 39

TestConvolve
)
add test (${tfile}-image ${VTK EXECUTABLE}
${VTK SOURCE DIR}/Tests/rtImageTest.tcl
${VTKisOURCE_DIR}/TeStS/${tfile}.tCl
-D ${VTK_DATA ROOT}
-V Baseline/Imaging/${tfile}.png
-A ${VTK SOURCE DIR}/Wrapping/Tcl
)
endforeach (tfile)

The first argument of the foreach command is the name of the variable that will take on a
different value with each iteration of the loop. The remaining arguments are the list of values
over which to loop. In this example the body of the foreach loop is just one CMake
command, add_test. In the body of the foreach loop any time the loop variable (tfile in
this example) is referenced it will be replaced with the current value from the list. In the first
iteration, occurrences of $ {tfile} will be replaced with TestAnisotropicDiffusion2D.
In the next iteration, ${tfile} will be replaced with TestButterworthLowPass. The
foreach loop will continue to loop until all of the arguments have been processed.

It is worth mentioning that foreach loops can be nested and that the loop variable is replaced
prior to any other variable expansion. This means that in the body of a foreach loop you
can construct variable names using the loop variable. In the code below the loop variable
tfile is expanded, and then concatenated with TEST RESULT. That new variable name is
then expanded and tested to see if it matches FATLED.

if (${${tfile}}*TESTiRESULT} MATCHES FAILED)
message ("Test ${tfile} failed.")
endif ()

The while command provides for looping based on a test condition. The format for the test
expression in the while command is the same as that for the if command described earlier.
Consider the following example, which is used by CTest. Note that CTest updates the value of
CTEST ELAPSED TIME internally.

FREFAFF AR A AR R R R AR R A R R R

run paraview and ctest test dashboards for 6 hours

#

while (${CTEST ELAPSED TIME} LESS 36000)
set (START TIME ${CTEST ELAPSED TIME})
ctest run script ("dashl ParaView vs7lcontinuous.cmake")
ctest run script ("dashl cmake vs7lcontinuous.cmake")

40 Writing CMakelLists Files

endwhile ()

The foreach and while commands allow you to handle repetitive tasks that occur in
sequence, whereas the macro and function commands support repetitive tasks that may be
scattered throughout your CMakeLists files. Once a macro or function is defined it can be
used by any CMakeLists files processed after its definition.

A function in CMake is very much like a function in C or C++. You can pass arguments into
it, and the arguments passed in become variables within the function. Likewise some standard
variables such as ARGC, ARGV, ARGN, and ARGVO0, ARGV 1, etc are defined. Within a function
you are in a new variable scope, much like when you drop into a subdirectory using the
add_subdirectory command you are in a new variable scope. All the variables that were
defined when the function was called are still defined, but any changes to variables or new
variables only exist within the function. When the function returns those variables will go
away. Put more simply, when you invoke a function a new variable scope is pushed and when
it returns that variable scope is popped.

The first argument is the name of the function to define. All additional arguments are formal
parameters to the function.

function (DetermineTime time)
pass the result up to whatever invoked this
set (${ time} “1:23:45” PARENT SCOPE)
endfunction ()

now use the function we just defined
DetermineTime (current time)

if (DEFINED current time)
message (STATUS "The time is now: ${curret time}")
endif ()

Note that in this example time is used to pass the name of the return variable. The set
command is invoked with the value of time, which in this example will be current time.
Finally the set command uses the PARENT SCOPE option to set that variable in the parent’s
scope instead of the local scope.

Macros are defined and called in the same manner as functions. The main differences are that
a macro does not push and pop a new variable scope, and the arguments to a macro are not
treated as variables but are string replaced prior to execution. This is very much like the
differences between a macro and a function in C or C++. The first argument is the name of
the macro to create. All additional arguments are formal parameters to the macrol.

Flow Control 41

define a simple macro

macro (assert TEST COMMENT)
if (NOT ${TEST})
message ("Assertion failed: ${COMMENT}"™)
endif (NOT ${TEST})
endmacro (assert)

use the macro
find library (FOO LIB foo /usr/local/lib)
assert (${FOO_LIB} "Unable to find library foo")

The simple example above creates a macro called assert. The macro is defined to take two
arguments. The first argument is a value to test and the second argument is a comment to print
out if the test fails. The body of the macro is a simple if command with a message
command inside of it. The macro body ends when the endmacro command is found. The
macro can be invoked simply by using its name as if it were a command. In the above
example if OO LIB was not found a message would be displayed indicating the error
condition.

The macro command also supports defining macros that take variable argument lists. This
can be useful if you want to define a macro that has optional arguments or multiple signatures.
Variable arguments can be referenced using ARGC and ARGVO0, ARGV, etc., instead of the
formal parameters. ARGVO represents the first argument to the macro, ARGV1 represents the
next, and so forth. You can even use a mixture of formal arguments and variable arguments,
as shown in the example below.

define a macro that takes at least two arguments
(the formal arguments) plus an optional third argument

macro (assert TEST COMMENT)
if (NOT S${TEST})
message ("Assertion failed: S${COMMENT}")

1f called with three arguments then also write the
message to a file specified as the third argument
if (${ARGC} MATCHES 3)
file (APPEND ${ARGV2} "Assertion failed: ${COMMENT}")
endif (${ARGC} MATCHES 3)

endif (NOT S${TEST})
endmacro (ASSERT)

42 Writing CMakelLists Files

use the macro
find library (FOO LIB foo /usr/local/lib)
assert (${FOO_LIB} "Unable to find library foo")

In this example the two required arguments are TEST and COMMENT. These required
arguments can be referenced by name, as they are in this example, or they can be referenced
using ARGVO and ARGV1. If you want to process the arguments as a list you can use the ARGV
and ARGN variables. ARGV (as opposed to ARGVO, ARGV, etc) is a list of all the arguments to
the macro, while ARGN is a list of all the arguments after the formal arguments. Inside your
macro you can use the foreach command to iterate over ARGV or ARGN as desired.

CMake has two commands for interrupting the processing flow. The break command will

break out of a foreach or while loop before it would normally end. The return command
will return from a function or listfile before the function or listfile has reached its end.

4.4 Regular Expressions

A few CMake commands, such as if and string, make use of regular expressions, or can
take a regular expression as an argument. In its simplest form, a regular-expression is a
sequence of characters used to search for exact character matches. However, many times the
exact sequence to be found is not known, or only a match at the beginning or end of a string is
desired. Since there are several different conventions for specifying regular expressions
CMake’s standard is described below. The description is based on the open source regular
expression class from Texas Instruments, which is used by CMake for parsing regular
expressions.

Regular expressions can be specified by using combinations of standard alphanumeric
characters and the following regular expression meta-characters:

n Matches at beginning of a line or string.
$ Matches at end of a line or string.
Matches any single character other than a newline.
[] Matches any character(s) inside the brackets.
[*] Matches any character(s) not inside the brackets.
[-] Matches any character in range on either side of a dash.

Matches preceding pattern zero or more times.

Regular Expressions 43

+ Matches preceding pattern one or more times.
? Matches preceding pattern zero or once only.
0 Saves a matched expression and uses it in a later replacement.

(|) Matches either the left or right side of the bar.

Note that more than one of these meta-characters can be used in a single regular expression in
order to create complex search patterns. For example, the pattern [*ab1-9] indicates to match
"n,»

any character sequence that does not begin with the characters "a” or “b" or numbers in the
series one through nine. The following examples may help clarify regular expression usage:

e The regular expression "“hello" matches a "hello" only at the beginning of a search
string. It would match "hello there", but not "hi,\nhello there".

e The regular expression "long$" matches a "long" only at the end of a search string. It
would match "so long", but not "long ago".

e The regular expression "t.t..g" will match anything that has a "t", then any two
characters, another "t", any two characters, and then a "g". It would match "testing" or
"test again", but would not match "toasting".

e The regular expression "[1-9ab]" matches any number one through nine, and the
characters "a" and "b". It would match "hello 1" or "begin", but would not match "no-
match".

e The regular expression "["1-9ab]" matches any character that is not a number one
through nine, or an "a" or "b". It would NOT match "lab2" or "b2345a", but would
match "no-match".

e The regular expression "br* " matches something that begins with a "b", is followed by
zero or more "r''s, and ends in a space. It would match "brrrrr " and "b ", but would not
match "brrh ".

e The regular expression "br+ " matches something that begins with a "b", is followed by
one or more "r"s, and ends in a space. It would match "brrrrr "', and "br ", but would not
match "b " or "brrh ".

e The regular expression "br? " matches something that begins with a "b", is followed by
zero or one "r'"s, and ends in a space. It would match "br ", and "b ", but would not
match "brrrr " or "brrh .

e The regular expression "(..p)b" matches something ending with pb and beginning with
whatever the two characters before the first p encountered in the line were. It would find
"repb" in "rep drepaqrepb". The regular expression "(..p)a" would find "repa grepb" in
"rep drepa qrepb"

44 Writing CMakelLists Files

e The regular expression "d(..p)" matches something ending with p, beginning with d, and
having two characters in between that are the same as the two characters before the first
p encountered in the line. It would match "drepa grepb" in "rep drepa qrepb”.

4.5 Checking Versions of CMake

CMake is an evolving program and as new versions are released, new features or commands
may be introduced. As a result, there may be instances where you might want to use a
command that is in a current version of CMake but not in previous versions. There are a
couple of ways to handle this. One option is to use the i f command to check whether a new
command exists. For example:

test 1f the command exists

if (COMMAND some new command)

use the command

some new command (ARGS...)
endif (COMMAND some new command)

The above approach should work in most cases, but if you need more information you can test
against the actual version of CMake that is being run by evaluating the CMAKE VERSION
variables, as in the following example:

look for newer versions of CMake

if (${CMAKE VERSION} VERSION GREATER 1.6.1)
do something special here
endif ()

When writing your CMakeLists files you might decide that you do not want to support old

versions of CMake. To do this you can place the following command at the top of your
CMakelLists file:

cmake minimum required (VERSION 2.2)

This indicates that the person running CMake on your project must have at least CMake
version 2.2. If they are running an older version of CMake then an error message will be
displayed telling them that the project requires at least the specified version of CMake.

Using Modules 45

Finally, in some cases a new release of CMake might come out that no longer supports some
commands you were using (although we try to avoid this). In these cases you can use CMake
policies, as discussed in section 4.7.

4.6 Using Modules

Code reuse is a valuable technique in software development and CMake has been designed to
support it. Allowing CMakeLists files to make use of reusable modules enables the entire
CMake community to share reusable sections of code. For CMake these sections of code are
called modules and can be found in the Modules subdirectory of your CMake installation.
Modules are simply sections of CMake commands put into a file. They can then be included
into other CMakeLists files using the include command. For example, the following
commands will include the FindTCT module from CMake and then add the Tcl library to the
target FOO.

include (FindTCL)

target link libraries (FOO ${TCL LIBRARY})

A module’s location can be specified using the full path to the module file, or by letting
CMake find the module by itself. CMake will look for modules in the directories specified by
CMAKE MODULE PATH and if it cannot find it there, it will look in the Modules subdirectory
of CMake. This way projects can override modules that CMake provides, to customize them
for their needs. Modules can be broken into a few main categories:

Find Modules

These modules determine the location of software elements such as header files or
libraries.

System Introspection Modules

These modules test the system for properties such as the size of a float, support for
ANSI C++ streams, etc.

Utility Modules

These modules provide added functionality such as support for situations where one
CMake project depends on another and other convenience routines.

Now let us consider these three types of modules in more detail. CMake includes a large
number of Find modules. The purpose of a Find module is to locate software elements such as
header or library files. If they cannot be found then they provide a cache entry so that the user
can set the required properties. Consider the following module that finds the PNG library.

Writing CMakel.ists Files

S

Find the native PNG includes and library

B

This module defines

PNG_INCLUDE DIR, where to find png.h, etc.

PNG_LIBRARIES, the libraries to link against to use PNG.
PNG _DEFINITIONS - You should call

add _definitions (${PNG_DEFINITIONS}) before compiling code
that includes png library files.

PNG FOUND, If false, do not try to use PNG.

e

=

also defined, but not for general use are
. # PNG_LIBRARY, where to find the PNG library.

None of the above will be defined unless zlib can be found.

PNG depends on Zlib
- include (FindZLIB.cmake)

- if (ZLIB FOUND)

find path (PNG_PNG_INCLUDE DIR png.h
/usr/local/include

/usr/include

)

find library (PNG LIBRARY png
/usr/1lib

/usr/local/lib

)

if (PNG_LIBRARY)
if (PNG_PNG_INCLUDE DIR)
png.h includes zlib.h. Sigh.
set (PNG_INCLUDE DIR
${PNG_PNG_ INCLUDE DIR} ${ZLIB INCLUDE DIR})
set (PNG _LIBRARIES $S{PNG_ LIBRARY} ${ZLIB LIBRARY})
set (PNG FOUND "YES")

if (CYGWIN)
if (BUILD SHARED LIBS)
No need to define PNG USE DLL here, because
it's default for Cygwin.
else (BUILD SHARED LIBS)

Using Modules 47

set (PNG DEFINITIONS -DPNG STATIC)
endif (BUILD SHARED LIBS)
endif (CYGWIN)

endif ()
endif ()

endif ()

The top of the module clearly documents what the module will do and what variables it will
set. Next it includes another module, the FindZLIB module, that determines if the ZLib
library is installed. Next, if ZLib is found, the find path command is used to locate the
PNG include files. The first argument is the name of the variable to store the result in, the
second argument is the name of the header file to look for, the remaining arguments are paths
to search for the header file. If it is not found in the system path then the variable is set to
PNG_PNG INCLUDE DIR-NOTFOUND, allowing the user to set it.

Note that the paths to search for the PNG library can include hard coded directories, registry
entries, and directories made up of other CMake variables. The next command finds the actual
PNG library using the £ind library command. This command performs additional checks
to find a proper library name, such as adding "lib" in front of the name and ".so" at the end of
the name on Linux systems.

After the find calls, some CMake variables are set that developers using FindPNG can use in
their projects (such as the include paths, and library name). Finally PNG FOUND is set
correctly, which lets developers know that the PNG library was properly found.

This structure is fairly common to all Find modules in CMake. Usually they are fairly short,
but in some cases, such as FindOpenGL they can be a few pages long. They are normally
independent of other modules, but there is no restriction on the use of other modules.

System introspection modules provide information about the target platform or compiler.
Many of these modules have names prefixed with Test or Check, such as TestBigEndian
and CheckTypeSize. Many of the system introspection modules actually try to compile code
in order to determine the correct result. In these cases the source code is usually named the
same as the module, but with a .c or .cxx extension. System introspection modules are
covered in more detail in chapter 5.

CMake includes a few Utility modules to help make using CMake a little easier.
CMakeExportBuildSettings and CMakeImportBuildSettings provide tools to help
verify that two C++ projects are compiled with the same compiler and key flags. The
CMakePrintSystemInformation module prints out a number of key CMake settings to aid
in debugging.

48 Writing CMakelLists Files

Using CMake with SWIG

One example of how modules can be used is to look at wrapping your C/C++ code in another
language using SWIG. SWIG (Simplified Wrapper and Interface Generator) www.swig.org is
a tool that reads annotated C/C++ header files, and creates wrapper code (glue code) in order
to make the corresponding C/C++ libraries available to other programming languages such as
Tcl, Python, or Java. CMake supports SWIG with the find package command. Although
SWIG can be used from CMake using custom commands, the SWIG package provides
several macros that make building SWIG projects with CMake simpler. To use the SWIG
macros, first you must call the find package command with the name SWIG. Then you
need to include the file referenced by the variable SwiG_USE FILE. This will define several
macros and set up CMake to easily build SWIG based projects.

Two very wuseful macros are SWIG ADD MODULE and SWIG LINK LIBRARIES.
SWIG ADD MODULE works much like the add library command in CMake. The command
is invoked like this:

- SWIG_ADD MODULE (module name language sourcel source? .. sourceN)

The first argument is the name of the module to create. The next argument is the target
language SWIG is producing a wrapper for. The rest of the arguments consist of a list of
source files used to create the shared module. The big difference is that SWIG .1 interface
files can be used directly as sources. The macro will create the correct custom commands to
run SWIG, and generate the C or C++ wrapper code from the SWIG interface files. The
sources can also be regular C or C++ files that need to be compiled in with the wrappers.

The SWIG LINK LIBRARIES macro is used to link support libraries to the module. This
macro is used because depending on the language being wrapped by SWIG, the name of the
module may be different. The actual name of the module is stored in a variable called
SWIG MODULE ${name} REAL NAME where ${name} is the name passed into the
SWIG ADD MODULE macro. For example, SWIG ADD MODULE (foo tcl foo.i) would
create a variable called SWIG MODULE foo REAL NAME which would contain the name of
the actual module created.

Now consider the following example that uses the SWIG example found in SWIG under
Examples/python/class.

Find SWIG and include the use swig file
find package (SWIG REQUIRED)
include (${SWIG USE FILE})

Find python library and add include path for python headers
find package (PythonLibs)
include directories (${PYTHON INCLUDE PATH})

Using Modules 49

set the global swig flags to empty
set (CMAKE SWIG FLAGS "")

' # let swig know that example.i is c++ and add the -includeall
flag to swig
set source files properties (example.i PROPERTIES CPLUSPLUS ON)
:set_source_filesﬁproperties (example.i
PROPERTIES SWIG FLAGS "-includeall")

Create the swig module called example
. # using the example.i source and example.Ccxx
swig will be used to create wrap example.cxx from example.i
SWIG ADD MODULE (example python example.i example.cxx)
SWIG LINK LIBRARIES (example ${PYTHON LIBRARIES})

This example first uses find package to locate SWIG. Next it includes the
SWIG USE FILE defining the SWIG CMake macros. Then it finds the Python libraries and
sets up CMake to build with the Python library. Notice that the SWIG input file example.i is
used like any other source file in CMake, and properties are set on the file telling SWIG that
the file is C++ and that the SWIG flag —includeall should be used when running SWIG on that
source file. The module is created by telling SWIG the name of the module, the target
language and the list of source files. Finally, the Python libraries are linked to the module.

Using CMake with Qt

Projects using the popular widget toolkit Qt from Nokia, qt.nokia.com, can be built with
CMake. CMake supports multiple versions of Qt, including versions 3 and 4. The first step is
to tell CMake what version(s) of Qt to look for. Many Qt applications are designed to work
with Qt3 or Qt4, but not both. If your application is designed for Qt4 then you can use the
FindQt4 module, for Qt3 you should use the FindQt3 module. If your project can work with
either version of Qt then you can use the generic FindQt module. All of the modules provide
helpful tools for building Qt projects. The following is a simple example of building a project
that uses Qt4.

. find package (Qt4)

if (QT4 FOUND)
include (${QT USE FILE})

what are our ui files?

set (QTUI_ SRCS gtwrapping.ui)
QT4 WRAP UI (QTUI H SRCS ${QTUI SRCS})
QT4 WRAP CPP (QT MOC_SRCS TestMoc.h)

50 Writing CMakel.ists Files

add library (mygtlib ${QTUI H SRCS} ${QT MOC_SRCS})
target link libraries (myqtlib ${QT LIBRARIES})

add executable (gtwrapping gtwrappingmain.cxx)
target link libraries (gtwrapping mygtlib)

' endif (QT4 FOUND)

Using CMake with FLTK

CMake also supports the The Fast Light Toolkit (FLTK) with special FLTK CMake
commands. The FLTK _WRAP UI command is used to run the fltk fluid program on a .fl file
and produce a C++ source file as part of the build. The following example shows how to use
FLTK with CMake.

find package (FLTK)
- if (FLTK FOUND)
set (FLTK SRCS
fltkl.fl
)
FLTK WRAP UI (wraplibFLTK ${FLTK SRCS})
add library (wraplibFLTK ${wraplibFLTK UI SRCS})
endif (FLTK__FOUND)

4.7 Policies

For various reasons, sometimes a new feature or change is made to CMake that is not fully
backwards compatible with older versions of CMake. This can create problems when
someone tries to use an old CMakeLists file with a new version of CMake. To help both end
users and developers through such issues, we have introduced policies. Policies are a
mechanism in CMake to help improve backwards compatibility and track compatibility issues
between different versions of CMake.

Design Goals

There were four main design goals for the CMake policy mechanism:

1. Existing projects should build with versions of CMake newer than that used by the
project authors.

e Users should not need to edit code to get the projects to build.
e Warnings may be issued but the projects should build.

Policies 51

2. Correctness of new interfaces or bugs fixes in old interfaces should not be inhibited by
compatibility requirements. Any reduction in correctness of the latest interface is not fair
on new projects.

3. Every change made to CMake that may require changes to a project’s CMakeLists files
should be documented.

e Each change should also have a unique identifier that can be referenced by warning
and error messages.

e The new behavior is enabled only when the project has somehow indicated it is
supported.

4. We must be able to eventually remove code that implements compatibility with ancient
CMake versions.

e Such removal is necessary to keep the code clean and to allow for internal
refactoring.

e After such removal, attempts to build projects written for ancient versions must fail
with an informative message.

All policies in CMake are assigned a name of the form CMPNNNN where NNNN is an integer
value. Policies typically support both an old behavior that preserves compatibility with earlier
versions of CMake, and a new behavior that is considered correct and preferred for use by
new projects. Every policy has documentation detailing the motivation for the change, and the
old and new behaviors

Setting Policies

Projects may configure the setting of each policy to request old or new behavior. When
CMake encounters user code that may be affected by a particular policy it checks to see
whether the project has set the policy. If the policy has been set (to OLD or NEW) then
CMake follows the behavior specified. If the policy has not been set then the old behavior is
used, but a warning is issued telling the project author to set the policy.

There are a couple ways to set the behavior of a policy. The quickest way is to set all policies
to a version corresponding to the release version of CMake for which the project was written.
Setting the policy version requests the new behavior for all policies introduced in the
corresponding version of CMake or earlier. Policies introduced in later versions are marked as
not set in order to produce proper warning messages. The policy version is set using the
cmake policy command's VERSION signature. For example, the code

cmake policy (VERSION 2.6)

will request the new behavior for all policies introduced in CMake 2.6 or earlier. The
cmake minimum required command will also set the policy version, which is convenient
for use at the top of projects. A project should typically begin with the lines

52 Writing CMakelLists Files

. cmake minimum required (VERSION 2.6)
| project (MyProject)
- # ...code using CMake 2.6 policies

Of course one should replace "2.6" with whatever version of CMake you are currently writing
to. You can also set each policy individually if you wish. This is sometimes helpful for project
authors who want to incrementally convert their projects to use the new behavior, or silence
warnings about dependence on old behavior. The cmake policy command's SET option
may be used to explicitly request old or new behavior for a particular policy.

For example, CMake 2.6 introduced policy CMP0002, which requires all logical target names
to be globally unique (duplicate target names previously worked in some cases by accident
but were not diagnosed). Projects using duplicate target names and working accidentally will
receive warnings referencing the policy. The warnings may be silenced by the code

cmake policy (SET CMP0002 OLD)

which explicitly tells CMake to use the old behavior for the policy (silently accept duplicate
target names). Another option is to use the code

cmake policy (SET CMP0002 NEW)
to explicitly tell CMake to use new behavior and produce an error when a duplicate target is

created. Once this is added to the project it will not build until the author removes any
duplicate target names.

When a new version of CMake is released that introduces new policies it will still build old
projects, because by default they do not request NEW behavior for any of the new policies.
When starting a new project one should always specify the most recent release of CMake to
be supported as the policy version level. This will make sure that the project is written to
work using policies from that version of CMake and not using any old behavior. If no policy
version is set CMake will warn and assume a policy version of 2.4. This allows existing
projects that do not specify cmake minimum required to build as they would have with
CMake 2.4.

The Policy Stack

Policy settings are scoped using a stack. A new level of the stack is pushed when entering a
new subdirectory of the project (with add_subdirectory) and popped when leaving it.
Therefore setting a policy in one directory of a project will not affect parent or sibling
directories, but will affect subdirectories.

Policies 53

This is useful when a project contains subprojects maintained separately but built inside the
tree. The top-level CMakelLists file in a project may write

. cmake policy (VERSION 2.6)

- project (MyProject)

ﬁaddﬁsubdirectory (OtherProject)

. # ... code requiring new behavior as of CMake 2.6-...

while the OtherProject/CMakeLists. txt file contains

:cmake_policy (VERSION 2.4)
, project (OtherProject)
... code that builds with CMake 2.4 ...

This allows a project to be updated to CMake 2.6 while subprojects, modules, and included
files continue to build with CMake 2.4 until their maintainers update them.

User code may use the cmake policy command to push and pop its own stack levels as long
as every push is paired with a pop. This is useful to temporarily request different behavior for
a small section of code. For example, policy CMP0003 removes extra link directories that used
to be included when new behavior is used. While incrementally updating a project it may be
difficult to build a particular target with the new behavior but all other targets are okay. The
code

. cmake _policy (PUSH)

. cmake policy (SET CMP0003 OLD) # use old-style link for now
E add executable (myexe ...)

;cmake_policy (POP)

will silence the warning and use the old behavior for that target. You can get a list of policies
and help on specific policies by running cmake from the command line as follows

:cmake --help-command cmake policy
. cmake --help-policies
- cmake --help-policy CMP0003

Updating a Project For a New Version of CMake

When a CMake release introduces new policies it may generate warnings for some existing
projects. These warnings indicate that changes to the project may need to be made to deal
correctly with the new policies. While old releases of the project can continue to build with

54 Writing CMakelLists Files

the warnings the project development tree should be updated to take the new policies into
account. There are two approaches to updating a tree: one-shot and incremental. Which one is
easier depends on the size of the project and what new policies produce warnings.

The One-Shot Approach

The simplest approach to updating a project for a new version of CMake is simply to change
the policy version set at the top of the project, try building with the new CMake version, and
fix problems. For example, to update a project to build with CMake 2.8 one might write

cmake minimum required (VERSION 2.8)

at the beginning of the top-level CMakeLists file. This tells CMake to use the new behavior
for every policy introduced in CMake 2.8 and below. When building this project with CMake
2.8 no warnings will be produced about policies because it knows of no policies introduced in
later versions. However, if the project was depending on the old behavior of a policy it may
not build since CMake now uses the new behavior without warning. It is up to the project
author who added the policy version line to fix these issues.

The Incremental Approach

Another approach to updating a project for a new version of CMake is to deal with each
warning one-by-one. One advantage of this approach is that the project will continue to build
throughout the process, so the changes can be made incrementally.

When CMake encounters a situation where it needs to know whether to use the old or new
behavior for a policy, it checks whether the project has set the policy. If the policy is set
CMake silently uses the corresponding behavior. If the policy is not set, CMake uses the old
behavior but warns that the policy is not set.

In many cases the warning message will point at the exact line of code in the CMakeL.ists files
that caused the warning. In some cases the situation cannot be diagnosed until CMake is
generating the native build system rules for the project, so the warning will not include
explicit context information. In these cases CMake will try to provide some information about
where code may need to be changed. The documentation for these "generation-time" policies
should indicate the point in the project code at which the policy should be set to take effect.

In order to incrementally update a project one warning should be addressed at a time. Several
cases may occur as described below.

Silence a Warning When the Code is Correct

Many policy warnings may be produced simply because the project has not set the policy
even though the project may work correctly with the new behavior (there is no way for
CMake to know the difference). For a warning about some policy CMP<NNNN> one may check
whether this is the case by adding

Policies 55

¢ cmake policy (SET CMP<NNNN> NEW)

to the top of the project and trying to build it. If the project builds correctly with the new
behavior one may move on to the next policy warning. If the project does not build correctly
one of the other cases may apply.

Silence a Warning Without Updating the Code
One may suppress all instances of a warning CMP<NNNN> by adding

cmake policy (SET CMP<NNNN> OLD)

at the top of a project. However, we encourage project authors to update their code to work
with the new behavior for all policies. This is especially important because versions of CMake
in the (distant) future may remove support for the old behavior and produce an error for
projects requesting it (which tells the user to get an older CMake to build the project).

Silence a Warning by Updating Code

When a project does not work correctly with the NEW behavior for a policy its code needs to
be updated. In order to deal with a warning for some policy CMP<NNNN> one may add

- cmake policy (SET CMP<NNNN> NEW)

at the top of the project and then fix the code to work with the NEW behavior.

If many instances of the warning occur fixing all of them simultaneously may be too difficult.
Instead a developer may fix one at a time. This may be done using the PUSH/POP signatures
of the cmake policy command

- cmake policy (PUSH)

- cmake policy (SET CMP<NNNN> NEW)

... code updated for new policy behavior ...
cmake policy (POP)

This will request the new behavior for a small region of code that has been fixed. Other
instances of the policy warning may still appear and must be fixed separately.

Updating the Project Policy Version

After addressing all policy warnings and getting the project to build cleanly with the new
CMake version one step remains. The policy version set at the top of the project should now
be updated to match the new CMake version, just as in the one-shot approach above. For

56 Writing CMakelLists Files

example, after updating a project to build cleanly with CMake 2.8 one may update the top of
the project with the line

cmake minimum required (VERSION 2.8)

This will set all policies introduced in CMake 2.8 or below to use the new behavior. Then one
may sweep through the rest of the code and remove all the calls to the cmake policy
command used to request the new behavior incrementally. The end result should look the
same as the one-shot approach above but could be attained step-by-step.

Supporting Multiple CMake Versions

Some projects might want to support a few releases of CMake simultaneously. The goal is to
build with an older version but also work with newer versions without warnings. In order to
support both CMake 2.4 and 2.6, one may write code like

cmake minimum required (VERSION 2.4)
if (COMMAND cmake policy)

policy settings

cmake policy (SET CMP0O003 NEW)
endif (COMMAND cmake policy)

This will set the policies when building with CMake 2.6 and just ignore them for CMake 2.4.
In order to support both CMake 2.6 and some policies of CMake 2.8, one may write code like

cmake minimum required (VERSION 2.6)

if (POLICY CMP1234)
policies not known to CMake 2.6 ...
cmake policy (SET CMP1234 NEW)

endif (POLICY CMP1234)

This will set the policies when building with CMake 2.8 and just ignore them for CMake 2.6.
If it is known that the project builds with both CMake 2.6 and CMake 2.8's new policies one
may write

cmake minimum required (VERSION 2.6)

if (NOT ${CMAKE_VERSION} VERSION LESS 2.8)
cmake policy (VERSION 2.8)

endif ()

Linking Libraries 57

4.8 Linking Libraries

In CMake 2.6 and later a new approach to generating link lines for targets has been
implemented. Consider these libraries:

/path/to/libfoo.a
- /path/to/libfoo.so

Previously if someone wrote
. target link libraries (myexe /path/to/libfoo.a)
CMake would generate this code to link it:

-L/path/to -Wl,-Bstatic -1foo -W1,-Bdynamic

This worked most of the time, but some platforms (such as Mac OS X) do not support the -
Bstatic or equivalent flag. This made it impossible to link to the static version of a library
without creating a symlink in another directory and using that one instead. Now CMake will
generate this code:

/path/to/libfoo.a ...

This guarantees that the correct library is chosen. However there are some caveats to keep in
mind. In the past a project could write this (incorrect) code, and it would work by accident:

. add_executable (myexe myexe.c)
target link libraries (myexe /path/to/libA.so B)

where "B" is meant to link "/path/to/1ibB.so". This code is incorrect because it asks
CMake to link to B but does not provide the proper linker search path for it. It used to work by
accident because the -L/path/to would get added as part of the implementation of linking
to A. The correct code would be either

. link directories (/path/to)
- add_executable (myexe myexe.cC)
target link libraries (myexe /path/to/libA.so B)

58 Writing CMakelLists Files

or even better

add_executable (myexe myexe.c)
- target link libraries (myexe /path/to/libA.so /path/to/libB.so)

Linking to System Libraries

System libraries on UNIX-like systems are typically provided in /usr/lib or /1ib. These
directories are considered implicit linker search paths because linkers automatically search
these locations, even without a flag like -L/usr/1ib. Consider the code

find library (M_LIB m)
target link libraries (myexe ${M_LIB})

Typically the find library command would find the math library /usr/lib/libm.so,
but some platforms provide multiple versions of libraries correesponding to different
architectures. For example, on an IRIX machine one might find the libraries

/usr/lib/libm.so (ELF 032)

/usr/1ib32/1libm.so (ELF n32)
/usr/1ib64/libm.so (ELF 64)

On a Solaris machine one might find

/usr/lib/libm.so (sparcv8 architecture)
/usr/lib/sparcv9/libm.so (sparcv9 architecture)

Unfortunately, £ind library may not know about all of the architecture-specific system
search paths used by the linker. In fact, when it finds /usr/1ib/libm.so, it may be finding
a library with the incorrect architecture. If the link computation were to produce the line

/usr/lib/libm.so

the linker might complain if /usr/1ib/libm.so does not match the architecture it wants.
One solution to this problem is for the link computation to recognize that the library is in a
system directory and ask the linker to search for the library. It could produce the link line

-lm ...

Shared Libraries and Loadable Modules 59

and the linker would search through its architecture-specific implicit link directories to find
the correct library. Unfortunately, this solution suffers from the original problem of
distinguishing between static and shared versions. In order to ask the linker to find a static
system library with the correct architecture it must produce the link line

. -Wl,-Bstatic -1Im ... -Wl,-Bshared ...

Since not all platforms support such flags CMake compromises. Libraries that are not in
implicit system locations are linked by passing the full library path to the linker. Libraries that
are in implicit system locations (such as /usr/1ib) are linked by passing the -1 option if a
flag like -Bstatic is available, and by passing the full library path to the linker otherwise.

Specifying Optimized or Debug Libraries with a Target

On Windows platforms it is often required to link debug libraries with debug libraries, and
optimized libraries with optimized libraries. CMake helps satisfy this requirement with the
target link libraries command, which accepts an optional flag that is debug or
optimized. So, if a library is preceded with either debug or optimized, then that library will
only be linked in with the like configuration type. For example:

i add executable (foo foo.c)
target link libraries (foo debug libdebug optimized libopt)

In this case foo will be linked against libdebug if a debug build was selected, or against libopt
if an optimized build was selected.

4.9 Shared Libraries and Loadable Modules

Shared libraries and loadable modules are very powerful tools for software developers. They
can be used to create extension modules or plugins for off-the-shelf software, and can be used
to decrease the compile/link/run cycles for C and C++ programs. However, despite years of
use, the cross platform creation of shared libraries and modules remains a black art
understood by only a few developers. CMake has the ability to aid developers in the creation
of shared libraries and modules. CMake knows the correct tools and flags to use in order to
produce the shared libraries for most modern operating systems that support them.
Unfortunately, CMake cannot do all the work, and developers must sometimes alter source
code and understand the basic concepts and common pitfalls associated with shared libraries
before they can be used effectively. This section will describe many of the issues required to
take advantage of shared libraries and loadable modules.

A shared library should be thought of more like an executable than a static library, and on
most systems actually requires executable permissions to be set on the shared library file. This

60 Writing CMakelLists Files

means that shared libraries can link to other shared libraries when they are created in the same
way as an executable. Unlike a static library where the atomic unit is the object file, for shared
libraries, the entire library is the atomic unit. This can cause some unexpected linker errors
when converting from static to shared libraries. If an object file is part of a static library, but
the executable linking to the library does not use any of the symbols in that object file, then
the file is simply excluded from the final linked executable. With shared libraries, all the
object files that make up the library and all of the dependencies that they require come as one
unit. For example, suppose you had a library with an object file defining the function
DisplayOnxWindow () which required the X11 library. If you linked an executable to that
libréry, but did not call the DisplayOnxwWindow () function, the static library version would
not require X11, but the shared library version would require the X11 library. This is because
a shared library has to be taken as one unit, and a static library is only an archive of object
files from which linkers can choose which objects are needed. This means that static linked
executables can be smaller, as they only contain the object code actually used.

Another difference between shared and static libraries is library order. With static libraries the
order on the link line can make a difference. This is because most linkers only use the
symbols that are needed in a single pass over all the given libraries. So, the library order
should go from the library that uses the most other libraries to the library that uses no other
libraries. CMake will preserve and remember the order of libraries and library dependencies
of a project. This means that each library in a project should use the
target link libraries command to specify all of the libraries that it directly depends
on. The libraries will be linked with each other for shared builds, but not static builds.
However, the link information is used in static builds when executables are linked. An
executable that only links library libA will get libA plus 1ibB and 1ibC as long as libA’s
dependency on 1ibB and libC was properly specified using target link libraries
(1ibA 1ibB 1ibC).

At this point, one might wonder why shared libraries would be preferred over static libraries.
There are several reasons. First, shared libraries can decrease the compile/link/run cycle time.
This is because the linker does not have to do as much work when linking to shared libraries
because there are fewer decisions to be made about which object files to keep. Also, often
times, the executable does not even need to be re-linked after the shared library is rebuilt. So,
developers can work on a library compiling and linking only the small part of the program
that is currently being developed, and then re-run the executable after each build of the shared
library. Also, if a library is used by many different executables on a system, then there only
needs to be one copy of the library on disk, and often in memory too.

In addition to the concept of a software library, shared libraries can also be used on many
systems as run time loadable modules. This means that a program can at run time, load and
execute object code that was not part of the original software. This allows developers to create
software that is both open and closed. (For more information see Object Oriented Software
Construction by Bertrand Meyer.) Closed software is software that cannot be modified. It has
been through a testing cycle and can be certified to perform specific tasks with regression

Shared Libraries and Loadable Modules 61

tests. However, a seemingly opposite goal is sought after by developers of object oriented
software. This is the concept of Open software that can be extended by future developers.
This can be done via inheritance and polymorphism with object systems. Shared libraries that
can be loaded at run time, allow for these seemingly opposing goals to be achieved in the
same software package. Many common applications support the idea of plugins. The most
common of these applications is the web browser. Internet Explorer uses plugins to support
video over the web and 3D visualization. In addition to plugins, loadable factories can be used
to replace C++ objects at run time, as is done in VTK.

Once it is decided that shared libraries or loadable modules are the right choice for a
particular project, there are a few issues that developers need to be aware of. The first
question that must be answered is which symbols are exported by the shared library? This
may sound like a simple question, but the answer is different from platform to platform. On
many, but not all UNIX systems, the default behavior is to export all the symbols much like a
static library. However, on Windows systems, developers must explicitly tell the linker and
compiler which symbols are to be exported and imported from shared libraries. This is often a
big problem for UNIX developers moving to Windows. There are two ways to tell the
compiler/linker which symbols to export/import on Windows. The most common approach is
to decorate the code with a Microsoft™ C/C++ language extension. An alternative is to create
an extra file called a .def file. This file is a simple ASCII file containing the names of all the
symbols to be exported from a library.

The Microsoft™ extension uses the declspec directive. If a symbol has declspec(
dllexport) in front of it, it will be exported, and if ithas declspec(dllimport) it
will be imported. Since the same file may be shared during the creation and use of a library, it
must be both exported and imported in the same source file. This can only be done with the
preprocessor. The developer can create a macro called LIBRARY EXPORT that is defined to
dllexport when building the library and d11import when using the library. CMake helps
this process by automatically defining ${LIBNAME} EXPORTS when building a DLL
(dynamic link library, a.k.a. a shared library) on Windows.

The following code snippet is from the VTK library vtkCommon, and is included by all files
in the vtkCommon library:

| #1f defined(WIN32)
#1f defined(vtkCommon EXPORTS)
#define VTK COMMON EXPORT declspec(dllexport)
#else
#define VTK COMMON EXPORT declspec(dllimport)
#endif
#else

#define VTK7COMMON7EXPORT
¥endif

62 Writing CMakelL.ists Files

The example checks for Windows and checks the vtkCommon EXPORTS macro provided by
CMake. So, on UNIX VTK COMMON_ EXPORT is defined to nothing, and on Windows during
the building of vtkCommon.dll it is defined as declspec (dllexport), and when the file
is being used by another file, it is defined to declspec (dllimport).

The second approach requires a .def file to specify the symbols to be exported. This file could
be created by hand, but for a large and changing C++ library that could be time consuming
and error prone. CMake’s custom commands can be used to run a pre-link program that will
create a .def file from the compiled object files automatically. In the following example, a
Perl script called makedef .pl is used, the script runs the DUMPBIN program on the .obj files
and extracts all of the exportable symbols and writes a .def file with the correct exports for all
the symbols in the library mylib.

--—--CMakelLists.txt-—-—---

cmake minimum required (VERSION 2.6)
project (myexe)

| set (SOURCES mylib.cxx mylib2.cxx)

. # create a list of all the object files
- string (REGEX REPLACE "\\.cxx" ".obj" OBJECTS "${SOURCES}")

create a shared library with the .def file
add library (mylib SHARED ${SOURCES}
S{CMAKEgCURRENT~BINARY#DIR}/mylib.def
)
- # set the .def file as generated
 set_source files properties (
. ${CMAKE CURRENT BINARY DIR}/mylib.def
PROPERTIES GENERATED 1
)

~# create an executable
add_executable (myexe myexe.CcxXx)

link the executable to the dll
target link libraries(myexe mylib)

. #convert to windows slashes
set (OUTDIR
${CMAKE _CURRENT BINARY DIR}/${CMAKE CFG_ INTDIR}
)

Shared Libraries and Loadable Modules

63

string (REGEX REPLACE "/" "\\\\" OUTDIR ${OUTDIR})

create a custom pre link command that runs
a perl script to create a .def file using dumpbin
add custom command (
TARGET mylib PRE LINK
COMMAND perl
ARGS ${CMAKE CURRENT SOURCE DIR}/makedef.pl
${CMAKE CURRENT BINARY DIR}\\mylib.def mylib
${OUTDIR} ${OBJECTS}
COMMENT "Create .def file"
)

——-myexe.CXXx———-—
#include <iostream>
- #include "mylib.h"
int main ()
{
std::cout << myTen () << "\n";
std: :cout << myEight () << "\n";

- ——-mylib.cxx--
~int myTen()
o

return 10;

--mylib2.cxx---
int myEight ()
A

return 8;

64 Writing CMakelLists Files

There is a significant difference between Windows and most UNIX systems with respect to
the requirements of symbols. DLLs on Windows are required to be fully resolved, this means
that they must link every symbol at creation. UNIX systems allow shared libraries to get
symbols from the executable or other shared libraries at run time. On UNIX systems that
support this feature, CMake will compile with the flags that allow executable symbols to be
used by shared libraries. This small difference can cause large problems. A common, but hard
to track down bug with DLLs happens with C++ template classes and static members. Two
DLLs can end up with separate copies of what is supposed to be a single global static member
of a class. There are also problems with the approach taken on most UNIX systems. The start
up time for large applications with many symbols can be long since much of the linking is
deferred to run time.

Another common pitfall occurs with C++ global objects. These objects require that
constructors must be called before they can be used. The main that links or loads C++ shared
libraries MUST be linked with the C++ compiler, or globals like cout may not be initialized
before they are used, causing strange crashes at start up time.

Since executables that link to shared libraries must be able to find the libraries at run time,
special environment variables and linker flags must be used. There are tools that can be used
to show which libraries an executable is actually using. On many UNIX systems there is a
tool called 1dd (otool -L on Mac OS X) that shows which libraries are used by an
executable. On Windows, a program called depends can be used to find the same type of
information. On many UNIX systems there are also environment variables like
LD LIBRARY PATH that tell the program where to find the libraries at run time. Where
supported CMake will add run time library path information into the linked executables, so
that LD LIBRARY PATH is not required. This feature can be turned off by setting the cache
entry CMAKE SKIP RPATH to false. This may be desirable for installed software that should
not be looking in the build tree for shared libraries. On Windows there is only one PATH
environment variable that is used for both DLLs and finding executables.

4.10 Shared Library Versioning

When an executable is linked to a shared library, it is important that the copy of the shared
library loaded at runtime matches that expected by the executable. On some UNIX systems, a
shared library has an associated "soname" intended to solve this problem. When an executable
links against the library, its soname is copied into the executable. At runtime, the dynamic
linker uses this name from the executable to search for the library.

Consider a hypothetical shared library "foo" providing a few C functions that implement some
functionality. The interface to foo is called an Application Programming Interface (API). If
the implementation of these C functions changes in a new version of foo, but the API remains
the same, then executables linked against foo will still run correctly. When the API changes,

Shared Library Versioning 65

old executables will no longer run with a new copy of foo, so a new API version number must
be associated with foo.

This can be implemented by creating the original version of foo with a soname and file name
such as libfoo.so.1. A symbolic link such as libfoo.so -> libfoo.so.1 will allow standard
linkers to work with the library and create executables. The new version of foo can be called
libfoo.s0.2 and the symbolic link updated so that new executables use the new library. When
an old executable runs, the dynamic linker will look for libfoo.so.1, find the old copy of the
library, and run correctly. When a new executable runs, the dynamic linker will look for
libfoo.s0.2 and correctly load the new version.

This scheme can be expanded to handle the case of changes to foo that do not modify the APIL.
We introduce a second set of version numbers that is totally independent of the first. This new
set corresponds to the software version providing foo. For example, some larger project may
have introduced the existence of library foo starting in version 3.4. In this case, the file name
for foo might be libfoo.s0.3.4, but the soname would still be libfoo.so.1 because the API for
foo is still on its first version. A symbolic link from libfoo.so.1 -> libfoo.so.3.4 will allow
executables linked against the library to run. When a bug is fixed in the software without
changing the API to foo, then the new library file name might be libfoo.s0.3.5, and the
symbolic link can be updated to allow existing executables to run.

CMake supports this soname-based version number encoding on platforms supporting soname
natively. A target property for the shared library named "VERSION" specifies the version
number used to create the file name for the library. This version should correspond to that of
the software package providing foo. On Windows the VERSION property is used to set the
binary image number, using major.minor format. Another target property named
"SOVERSION" specifies the version number used to create the soname for the library. This
version should correspond to the API version number for foo. These target properties are
ignored on platforms where CMake does not support this scheme.

The following CMake code configures the version numbers of the shared library foo:

set target properties (foo PROPERTIES VERSION 1.2 SOVERSION 4)

This results in the following library and symbolic links:

libfoo.so0.1.2
libfoo.s0.4 -> libfoo.s0.1.2
libfoo.so -> libfoo.so.4

If only one of the two properties is specified, the other defaults to its value automatically. For
example, the code

66 Writing CMakeLists Files

set target properties (foo PROPERTIES VERSION 1.2)

results in the following shared library and symbolic link:

libfoo.so0.1.2
libfoo.so -> libfoo.so.1.2

CMake makes no attempt to enforce sensible version numbers. It is up to the programmer to
utilize this feature in a productive manner.

4.11 Installing Files

Software is typically installed into a directory separate from the source and build trees. This
allows it to be distributed in a clean form and isolates users from the details of the build
process. CMake provides the install command to specify how a project is to be installed.
This command is invoked by a project in the CMakeLists file and tells CMake how to
generate installation scripts. The scripts are executed at install time to perform the actual
installation of files. For Makefile generators (UNIX, NMake, Borland, MinGW, etc.), the user
simply runs "make install” (or “nmake install”) and the make tool will invoke
CMake's installation module. With GUI based systems (Visual Studio, Xcode, etc.) the user
simply builds the target called INSTALL.

Each call to the install command defines some installation rules. Within one CMakeLists
file (source directory) these rules will be evaluated in the order in which the corresponding
commands are invoked. The order across multiple directories is not specified.

The install command has several signatures designed for common installation use cases. A
particular invocation of the command specifies the signature as the first argument. The
signatures are TARGETS, FILES, PROGRAMS, DIRECTORY, SCRIPT, and CODE.

install (TARGETS ...)
Install the binary files corresponding to targets built inside the project.

install (FILES ...)

General-purpose file installation. It is typically used for installation of header files,
documentation, and data files required by your software.

install (PROGRAMS ...)

Installs executable files not built by the project, such as shell scripts. It is identical to
install (FILES) except that the default permissions of the installed file include
the executable bit.

Installing Files 67

install (DIRECTORY ...)

Install an entire directory tree. This may be used for installing directories with
resources such as icons and images.

install (SCRIPT ...)

Specify a user-provided CMake script file to be executed during installation.
Typically this is used to define pre-install or post-install actions for other rules.

install (CODE ...)

Specify user-provided CMake code to be executed during the installation. This is
similar to install (SCRIPT) but the code is provided inline in the call as a string.

The TARGETS, FILES, PROGRAMS, DIRECTORY signatures are all meant to create install rules
for files. The targets, files, or directories to be installed are listed immediately after the
signature name argument. Additional details can be specified using keyword arguments
followed by corresponding values. Keyword arguments provided by most of the signatures are
as follows.

DESTINATION

Specifies the location in which the installation rule will place files. This argument
must be followed by a directory path indicating the location. If the directory is
specified as a full path it will be evaluated at install time as an absolute path. If the
directory is specified as a relative path it will be evaluated at install time relative to
the installation prefix. The prefix may be set by the user through the cache variable
CMAKE INSTALL PREFIX. A platform-specific default is provided by CMake:
“/usr/local” on UNIX and “<SystemDrive>/Program Files/<ProjectName>"
on Windows, where SystemDrive is something like “C:” and ProjectName is the
name given to the top-most PROJECT command.

PERMISSIONS

Specifies file permissions to be set on the installed files. This option is needed only
to override the default permissions selected by a particular INSTALL command
signature. Valid permissions are OWNER READ, OWNER WRITE, OWNER EXECUTE,
GROUP_READ, GROUP WRITE, GROUP EXECUTE, WORLD READ, WORLD WRITE,
WORLD_EXECUTE, SETUID, and SETGID. Some platforms do not support all of these
permissions, on such platforms those permission names are ignored.

CONFIGURATIONS

Specifies a list of build configurations for which an installation rule applies (Debug,
Release, etc.). For Makefile generators the build configuration is specified by the
CMAKE BUILD TYPE cache variable. For Visual Studio and Xcode generators the
configuration is selected when the INSTALL target is built. An installation rule will

68 Writing CMakelLists Files

be evaluated only if the current install configuration matches an entry in the list
provided to this argument. Configuration name comparison is case-insensitive.

COMPONENT

Specifies the installation component for which the installation rule applies. Some
projects divide their installations into multiple components for separate packaging.
For example, a project may define a “Runtime” component that contains the files
needed to run a tool, a “Development” component containing the files needed to
build extensions to the tool, and a “Documentation” component containing the
manual pages and other help files. The project may then package each component
separately for distribution by installing only one component at a time. By default all
components are installed. Component-specific installation is an advanced feature
intended for use by package maintainers. It requires manual invocation of the
installation scripts with an argument defining the COMPONENT variable to name the
desired component. Note that component names are not defined by CMake. Each
project may define its own set of components.

OPTIONAL

Specifies that it is not an error if the input file to be installed does not exist. If the
input file exists it will be installed as requested. If it does not exist it will be silently
not installed.

Projects typically install some of the library and executable files created during their build
process. The install command provides the TARGETS signature for this purpose:

Iinstall (TARGETS targets...

[[ARCHIVE | LIBRARY | RUNTIME | FRAMEWORK | BUNDLE |
PRIVATE HEADER|PUBLIC HEADER|RESOURCE]
[DESTINATION <dir>]

[PERMISSIONS permissions...]
[CONFIGURATIONS [Debug|Release|...]]
[COMPONENT <component>]

[OPTIONAL]

[EXPORT <export name>]
[NAMELINK ONLY |NAMELINK SKIP]

1 [...])

The TARGETS keyword is immediately followed by a list of the targets created using
add_executable or add library to be installed. One or more files corresponding to each
target will be installed.

Files installed with this signature may be divided into three categories: ARCHIVE, LIBRARY,
and RUNTIME. These categories are designed to group target files by typical installation

Installing Files 69

destination. The corresponding keyword arguments are optional, but if present specify that
other arguments following them apply only to target files of that type. Target files are
categorized as follows:

executables - RUNT IME
Created by add_executable (.exe on Windows, no extension on UNIX)

loadable modules - LIBRARY
Created by add_1library with the MODULE option (.dll on Windows, .so on UNIX)

shared libraries - LIBRARY

Created by add library with the SHARED option on UNIX-like platforms (.so on
most UNIX, .dylib on Mac)

dynamic-link libraries - RUNTIME
Created by add_library with the SHARED option on Windows platforms (.dll)

import libraries - ARCHIVE

Linkable file created by a dynamic-link library that exports symbols (.lib on most
Windows, .dll.a on Cygwin and MinGW).

static libraries - ARCHIVE

Created by add_library with the STATIC option (.lib on Windows, .a on UNIX,
Cygwin, and MinGW)

Consider a project that defines an executable myExecutable that links to a shared library
mySharedLib. It also provides a static library myStaticLib and a plugin module to the
executable called myPlugin that also links to the shared library. The executable, static
library, and plugin file may be installed individually using the commands

‘ install (TARGETS myExecutable DESTINATION bin)
| install (TARGETS myStaticLib DESTINATION lib/myproject)
install (TARGETS myPlugin DESTINATION 1lib)

The executable will not be able to run from the installed location until the shared library to
which it links is also installed. Installation of the library requires a bit more care in order to
support all platforms. It must be installed to a location searched by the dynamic linker on each
platform. On UNIX-like platforms the library is typically installed to 1ib,while on Windows
it should be placed next to the executable in bin. An additional challenge is that the import
library associated with the shared library on Windows should be treated like the static library
and installed to 1ib/myproject. In other words we have three different kinds of files
created with a single target name that must be installed to three different destinations!

70 Writing CMakelLists Files

Fortunately this problem can be solved using the category keyword arguments. The shared
library may be installed using the command

install (TARGETS mySharedLib
RUNTIME DESTINATION bin
LIBRARY DESTINATION 1lib
ARCHIVE DESTINATION lib/myproject)

.

This tells CMake that the RUNTIME file (.dll) should be installed to bin, the LIBRARY file
(.s0) should be installed to 1ib, and the ARCHIVE (.lib) file should be installed to
lib/myproject. On UNIX the LIBRARY file will be installed and on Windows the RUNTIME
and ARCHIVE files will be installed.

If the above sample project is to be packaged into separate runtime and development
components we must assign the appropriate component to each target file installed. The
executable, shared library, and plugin are required in order to run the application, so they
belong in a Runtime component. Meanwhile the import library (corresponding to the shared
library on Windows) and the static library are only required to develop extensions to the
application, and therefore belong in a Development component.

Component assignments may be specified by adding the COMPONENT argument to each of the
commands above. We may also combine all of the installation rules into a single command
invocation. This single command is equivalent to all of the above commands with
components added. The files generated by each target are installed using the rule for their
category.

install (TARGETS myExecutable mySharedLib myStaticLib myPlugin
RUNTIME DESTINATION bin COMPONENT Runtime
LIBRARY DESTINATION lib COMPONENT Runtime
ARCHIVE DESTINATION lib/myproject COMPONENT Development)

Either NAMELINK ONLY or NAMELINK SKIP may be specified as a LIBRARY option. On some
platforms a versioned shared library has a symbolic link such as

lib<name>.so -> lib<name>.so.1l

where lib<name>.so.1 is the soname of the library and 1ib<name>.so is a "namelink"
that helps linkers to find the library when given -l<name>. The NAMELINK ONLY option
causes installation of only the namelink when a library target is installed. The
NAMELINK_ SKIP option causes installation of library files other than the namelink when a
library target is installed. When neither option is given both portions are installed. On

Installing Files 71

platforms where versioned shared libraries do not have namelinks, or when a library is not
versioned, the NAMELINK SKIP option installs the library and the NAMELINK ONLY option
installs nothing. See the VERSION and SOVERSION target properties for details on creating
versioned shared libraries.

Projects may install files other than those that are created with add executable or
add_library, such as header files or documentation. General-purpose installation of files is
specified using the FILES signature:

install (FILES files... DESTINATION <dir>
[PERMISSIONS permissions...]
[CONFIGURATIONS [Debug|Releasel...]]
[COMPONENT <component>]
[RENAME <name>] [OPTIONAL])

The FILES keyword is immediately followed by a list of files to be installed. Relative paths
are evaluated with respect to the current source directory. Files will be installed to the given
DESTINATION directory. For example, the command

install (FILES my-api.h ${CMAKE_ CURRENT BINARY DIR}/my-config.h
DESTINATION include)

Installs the file my-api.h from the source tree and the file my-config.h from the build tree
into the include directory under the installation prefix. By default installed files are given
permissions OWNER_WRITE, OWNER READ, GROUP_READ, and WORLD_ READ, but this may be
overridden by specifying the PERMISSIONS option. Consider the case in which we want to
install a global configuration file on a UNIX system that is readable only by its owner (such
as root). We may accomplish this with the command

install (FILES my-rc DESTINATION /etc
PERMISSIONS OWNER WRITE OWNER_READ)

which installs the file my-rc with owner read/write permission into the absolute path /etc.
The RENAME argument specifies a name for an installed file that may be different from the

original file. Renaming is allowed only when a single file is installed by the command. For
example, the command

install (FILES version.h DESTINATION include RENAME my-version.h)

72 Writing CMakelL.ists Files

will install the file version.h from the source directory to include/my-version.h under
the installation prefix.

Projects may also install helper programs such as shell scripts or python scripts that are not
actually compiled as targets. These may be installed with the FILES signature using the
PERMISSIONS option to add execute permission. However this case is common enough to
justify a simpler interface. CMake provides the PROGRAMS signature for this purpose:

PROGRAMS files... DESTINATION <dir>

install
PERMISSIONS permissions...]

COMPONENT <component>]

(
[
[CONFIGURATIONS [Debug|Release]|...]]
[
[RENAME <name>] [OPTIONAL])

The PROGRAMS keyword is immediately followed by a list of scripts to be installed. This
command is identical to the FILES signature except that the default permissions additionally
include OWNER _EXECUTE, GROUP EXECUTE, and WORLD EXECUTE. For example, we may
install a python utility script with the command

install (PROGRAMS my-util.py DESTINATION bin)

which installs my-util.py to the bin directory under the installation prefix and gives it
owner, group, and world read and execute permission plus owner write.

Projects may also provide a whole directory full of resource files such as icons or html
documentation. An entire directory may be installed using the DIRECTORY signature:

DIRECTORY dirs... DESTINATION <dir>

FILE PERMISSIONS permissions...]

DIRECTORY PERMISSIONS permissions...]
USE_SOURCE_PERMISSIONS]

CONFIGURATIONS [Debug|Release|...]]

COMPONENT <component>]

[PATTERN <pattern> | REGEX <regex>]

EXCLUDE] [PERMISSIONS permissions...]] [...])

install (
[
[
[
(
[
[
[
The DIRECTORY keyword is immediately followed by a list of directories to be installed.

Relative paths are evaluated with respect to the current source directory. Each named
directory is installed to the destination directory. The last component of each input directory

Installing Files 73

name is appended to the destination directory as that directory is copied. For example, the
command

' install (DIRECTORY data/icons DESTINATION share/myproject)

will install the data/icons directory from the source tree into share/myproject/icons
under the installation prefix. A trailing slash will leave the last component empty and install
the contents of the input directory to the destination. The command

install (DIRECTORY doc/html/ DESTINATION doc/myproject)

installs the contents of doc/html from the source directory into doc/myproject under the
installation prefix. If no input directory names are given, as in

install (DIRECTORY DESTINATION share/myproject/user)

the destination directory will be created but nothing will be installed into it.

Files installed by the DIRECTORY signature are given the same default permissions as the
FILES signature. Directories installed by the DIRECTORY signature are given the same default
permissions as the PROGRAMS signature. The FILE PERMISSIONS and
DIRECTORY PERMISSIONS options may be used to override these defaults. Consider the case
in which a directory full of example shell scripts is to be installed into a directory that is both
owner and group writable. We may use the command

- install (DIRECTORY data/scripts DESTINATION share/myproject
FILE PERMISSIONS
OWNER READ OWNER EXECUTE OWNER WRITE
GROUP READ GROUP EXECUTE
WORLD READ WORLD EXECUTE
DIRECTORY PERMISSIONS
OWNER READ OWNER EXECUTE OWNER WRITE
GROUP READ GROUP_EXECUTE GROUP WRITE
WORLD READ WORLD_EXECUTE)

which installs the directory data/scripts into share/myproject/scripts and sets the
desired permissions. In some cases a fully prepared input directory created by the project may
have the desired permissions already set. The USE SOURCE PERMISSIONS option tells
CMake to use the file and directory permissions from the input directory during installation. If

74 Writing CMakelLists Files

in the previous example the input directory were to have already been prepared with correct
permissions the following command may have been used instead.

install (DIRECTORY data/scripts DESTINATION share/myproject
USE_SOURCE_PERMISSIONS)

If the input directory to be installed is under source management, such as CVS, there may be
extra subdirectories in the input that we do not wish to install. There may also be specific files
which should not be installed, or be installed with different permissions, while most files get
the defaults. The PATTERN and REGEX options may be used for this purpose. A PATTERN
option is followed first by a globbing pattern and then by an EXCLUDE or PERMISSIONS
option. A REGEX option is followed first by a regular expression and then by EXCLUDE or
PERMISSIONS. The EXCLUDE option skips installation of those files or directories matching
the preceding pattern or expression, while the PERMISSIONS option assigns specific
permissions to them.

Each input file and directory is tested against the pattern or regular expression as a full path
with forward slashes. A pattern will match only complete file or directory names occurring at
the end of the full path while a regular expression may match any portion. For example, the
pattern “foo*” will match “.../foo.txt” but not “.../myfoo.txt” or “.../foo/bar.txt”
but the regular expression “foo” will match all of them.

Returning to the above example of installing an icons directory, consider the case in which the
input directory is managed by CVS and also contains some extra text files that we do not want
to install. The command

- install (DIRECTORY data/icons DESTINATION share/myproject
‘ PATTERN “CVS” EXCLUDE
PATTERN “*.txt” EXCLUDE)

installs the icons directory while ignoring any CVS directory or text file contained. The
equivalent command using the REGEX option is

install (DIRECTORY data/icons DESTINATION share/myproject
REGEX “/CVS$” EXCLUDE
REGEX “/["/]*.txt$” EXCLUDE)

which uses ‘/” and ‘$’ to constrain the match in the same way as the patterns. Consider a
similar case in which the input directory contains shell scripts and text files that we wish to
install with different permissions than the other files. The command

Installing Files 75

. install (DIRECTORY data/other/ DESTINATION share/myproject
PATTERN “CVS” EXCLUDE
PATTERN “*.txt”
PERMISSIONS OWNER READ OWNER WRITE
PATTERN “*.sh”
PERMISSIONS OWNER READ OWNER WRITE OWNER EXECUTE)

will install the contents of data/other from the source directory to share/myproject
while ignoring CVS directories and giving specific permissions to . txt and . sh files.

Project installations may need to perform tasks other than just placing files in the installation
tree. Third-party packages may provide their own mechanisms to register new plugins which
must be invoked during project installation. The SCRIPT signature is provided for this

purpose:
_install (SCRIPT <file>)

The sCRIPT keyword is immediately followed by the name of a CMake script. CMake will
execute the script during installation. If the file name given is a relative path it will be
evaluated with respect to the current source directory. A simple use case is printing a message
during installation. We first write a message . cmake file containing the code

message (“Installing My Project”)
and then reference this script using the command
:install (SCRIPT message.cmake)

Custom installation scripts are not executed during the main CMakeLists file processing.
They are executed during the installation process itself. Variables and macros defined in the
code containing the install (SCRIPT) call will not be accessible from the script. However
there are a few variables defined during the script execution which may be used to get
information about the installation. The variable CMAKE INSTALL PREFIX is set to the actual
installation prefix. This may be different from the corresponding cache variable value because
the installation scripts may be executed by a packaging tool that uses a different prefix. An
environment variable ENV{DESTDIR} may be set by the user or packaging tool. Its value is
prepended to the installation prefix and to absolute installation paths to determine the location
to which files are installed. In order to reference an install location on disk the custom script
may use SENV{DESTDIR}S${CMAKE INSTALL PREFIX} as the top portion of the path. The
variable CMAKE INSTALL CONFIG NAME is set to the name of the build configuration

76 Writing CMakelLists Files

currently being installed (Debug, Release, etc.). During component-specific installation the
variable CMAKE INSTALL COMPONENT is set to the name of the current component.

Custom installation scripts, as simple as the message above, may be more easily created with
the script code placed inline in the call to the INSTALL command. The CODE signature is
provided for this purpose:

install (CODE “<code>")

The copE keyword is immediately followed by a string containing the code to place in the
installation script. An install-time message may be created using the command

install (CODE “MESSAGE (\”Installing My Project\”)”)

which has the same effect as the message . cmake script but contains the code inline.

Installing Prerequisite Shared Libraries

Executables are frequently built using shared libraries as building blocks. When you install
such an executable, you must also install its prerequisite shared libraries, called
“prerequisites” because the executable requires their presence in order to load and run
properly. The three main sources for shared libraries are the operating system itself, the build
products of your own project and third party libraries belonging to an external project. The
ones from the operating system may be relied upon to be present without installing anything:
they are on the base platform on which your executable runs. The build products in your own
project presumably have add library build rules in the CMakeLists files, and so it should be
straightforward to create CMake install rules for them. It is the third party libraries that
frequently become a high maintenance item when there are more than a handful of them or
when the set of them fluctuates from version to version of the third party project. Libraries
may be added, code may be reorganized, and the third party shared libraries themselves may
actually have additional prerequisites that are not obvious at first glance.

CMake provides two modules to make it easier to deal with required shared libraries. The first
module, GetPrerequisites.cmake, provides the get prerequisites function to analyze and
classify the prerequisite shared libraries upon which an executable depends. Given an
executable file as input, it will produce a list of the shared libraries required to run that
executable, including any prerequisites of the discovered shared libraries themselves. It uses
native tools on the various underlying platforms to perform this analysis: dumpbin
(Windows), otool (Mac) and I1dd (Linux). The second module, BundleUtilities.cmake,
provides the fixup bundle function to copy and fixup prerequisite shared libraries using
well-defined locations relative to the executable. For Mac bundle applications, it embeds the
libraries inside the bundle, fixing them up with install name tool to make a self-

Installing Files 77

contained unit. On Windows, it copies the libraries into the same directory with the
executable since executables will search in their own directories for their required DLLs.

The fixup bundle function helps you create relocatable install trees. Mac users appreciate
self-contained bundle applications: you can drag them anywhere, double click them and they
still work. They do not rely on anything being installed in a certain location other than the
operating system itself. Similarly Windows users without administrative privileges appreciate
a relocatable install tree where an executable and all of its required DLLs are installed in the
same directory and it works no matter where you install it. You can even move things around
after installing them and is will still work.

To use fixup bundle, first install one of your executable targets. Then, configure a CMake
script that can be called at install time. Inside the configured CMake script, simply include
BundleUtilities and call the fixup bundle function with appropriate arguments.

In CMakeLists.txt:

install (TARGETS myExecutable DESTINATION bin)

To install, for example, MSVC runtime libraries:
include (InstallRequiredSystemLibraries)

To install other/non-system 3rd party required libraries:
configure file (

${CMAKE CURRENT SOURCE DIR}/FixBundle.cmake.in

${CMAKE CURRENT BINARY DIR}/FixBundle.cmake

@ONLY

)

install (SCRIPT ${CMAKE CURRENT BINARY DIR}/FixBundle.cmake)

In FixBundle.cmake.in:

include (BundleUtilities)

Set bundle to the full path name of the executable already
existing in the install tree:
set (bundle
- “${CMAKE_ INSTALL PREFIX}/myExecutable@CMAKE EXECUTABLE SUFFIX@”)

Set other libs to a list of full path names to additional
libraries that cannot be reached by dependency analysis.
(Dynamically loaded PlugIns, for example.)

78 Writing CMakelLists Files

- set (other libs ™)

Set dirs to a list of directories where prerequisite libraries
may be found:
set (dirs “ELIBRARY OUTPUT PATHR")

| fixup bundle (“${bundle}” “${other libs}” “${dirs}”)

You are responsible for verifying that you have permission to copy and distribute the
prerequisite shared libraries for your executable. Some libraries may have restrictive software
licenses that prohibit making copies a la fixup bundle.

Exporting and Importing Targets
CMake 2.6 introduced support for exporting targets from one CMake-based project and
importing them into another. The main feature allowing this functionality is the notion of an

IMPORTED target. Here we present imported targets and then show how CMake files may be
generated by a project to export its targets for use by other projects.

Importing Targets

Imported targets are used to convert files outside of the project on disk into logical targets
inside a CMake project. They are created using the IMPORTED option to the
add_executable and add_library commands. No build files are generated for imported
targets. They are used simply for convenient, flexible reference to outside executables and
libraries. Consider the following example which creates and uses an IMPORTED executable
target:

add_executable (generator IMPORTED) # 1
set property (TARGET generator PROPERTY
IMPORTED LOCATION "/path/to/some generator") # 2

add custom command (OUTPUT generated.c
COMMAND generator generated.c) # 3

add executable (myexe srcl.c src2.c generated.c)

Line #1 creates a new CMake target called generator. Line #2 tells CMake the location of
the target on disk to import. Line #3 references the target in a custom command. Once CMake
is run the generated build system will contain a command line such as

/path/to/some generator /project/binary/dir/generated.c

Installing Files 79

in the rule to generate the source file. In a similar manner libraries from other projects may be
used through TMPORTED targets:

add_library (foo IMPORTED)
| set_property (TARGET foo PROPERTY

IMPORTED LOCATION "/path/to/libfoo.a")
; add executable (myexe srcl.c src2.c)
ftarget_link_libraries (myexe foo)

On Windows a .dll and its .lib import library may be imported together:

- add_library (bar IMPORTED)
- set property (TARGET bar PROPERTY
; IMPORTED LOCATION "c:/path/to/bar.dll")
- set property (TARGET bar PROPERTY
IMPORTED IMPLIB "c:/path/to/bar.lib")
add executable (myexe srcl.c src2.c)
ftarget_linkvlibraries (myexe bar)

A library with multiple configurations may be imported with a single target:

- add_library (foo IMPORTED)
. set property (TARGET foo PROPERTY
IMPORTED LOCATION RELEASE "c:/path/to/foo.lib")
set property (TARGET foo PROPERTY
' IMPORTED LOCATION DEBUG "c:/path/to/foo d.1lib")
add_executable (myexe srcl.c srcZ.c)
- target link libraries (myexe foo)

The generated build system will link myexe to foo.lib when it is built in the release
configuration and foo_d.1lib when built in the debug configuration.

Exporting Targets

Imported targets on their own are useful, but they still require the project that imports them to
know the locations of the target files on disk. The real power of imported targets is when the
project providing the target files also provides a file to help import them.

The install (TARGETS) and install (EXPORT) commands work together to install both a
target and a CMake file to help import it. For example, the code

. add_executable (generator generator.c)

80 Writing CMakelLists Files

! install (TARGETS generator DESTINATION lib/myproj/generators
i EXPORT myproj-targets)
install (EXPORT myproj-targets DESTINATION lib/myproj)

will install the two files

- <prefix>/lib/myproj/generators/generator
<prefix>/lib/myproj/myproj-targets.cmake

The first is the regular executable named generator. The second file, myproj-
targets.cmake, is a CMake file designed to make it easy to import generator. This file
contains code such as

get filename component (_self "S${CMAKE CURRENT LIST FILE}" PATH) :
- get filename component (PREFIX "${ self}/../.." ABSOLUTE)
i add executable (generator IMPORTED)
- set_property (TARGET generator PROPERTY
IMPORTED LOCATION "${PREFIX}/lib/myproj/generators/generator")

(note that $ {PREFIX} is computed relative to the file location). An outside project may now
use generator as follows:

include (${PREFIX}/lib/myproj/myproj-targets.cmake) # 1
add custom command (OUTPUT generated.c
COMMAND generator generated.c) # 2
- add_executable (myexe srcl.c src2.c generated.c)

Line #1 loads the target import script (see section 5.7 to make this automatic). The script may
import any number of targets. Their locations are computed relative to the script location so
the install tree may be easily moved. Line #2 references the generator executable in a custom
command. The resulting build system will run the executable from its installed location.
Libraries may also be exported and imported:

add library (foo STATIC fool.c)
install (TARGETS foo DESTINATION 1lib EXPORTS myproj-targets)
install (EXPORT myproj-targets DESTINATION lib/myproj)

This installs the library and an import file referencing it. Outside projects may simply write

Installing Files 81

include (${PREFIX}/lib/myproj/myproj-targets.cmake)
| add executable (myexe srcl.c)
target link libraries (myexe foo)

and the executable will be linked to the library foo exported and installed by the original
project.

Any number of target installations may be associated with the same export name. The export
names are considered global so any directory may contribute a target installation. Only one
call to the install (EXPORT) command is needed to install an import file that references all
targets. Both of the examples above may be combined into a single export file, even if they
are in different subdirectories of the project as shown in the code below.

- # A/CMakelists.txt

. add_executable (generator generator.c)

. install (TARGETS generator DESTINATION lib/myproj/generators
EXPORT myproj-targets)

| # B/CMakeLists.txt
add library (foo STATIC fool.c)
install (TARGETS foo DESTINATION lib EXPORTS myproj-targets)

| # Top CMakeLists.txt
. add_subdirectory (A)
add subdirectory (B)
install (EXPORT myproj-targets DESTINATION lib/myproj)

Typically projects are built and installed before being used by an outside project. However in
some cases it is desirable to export targets directly from a build tree. The targets may then be
used by an outside project that references the build tree with no installation involved. The
export command is used to generate a file exporting targets from a project build tree. For
example, the code

. add_executable (generator generator.c)
export (TARGETS generator FILE myproj-exports.cmake)

will create a file in the project build tree called myproj-exports.cmake that contains the
required code to import the target. This file may be loaded by an outside project that is aware
of the project build tree in order to use the executable to generate a source file. An example
application of this feature is for building a generator executable on a host platform when cross
compiling. The project containing the generator executable may be built on the host platform
and then the project that is being cross-compiled for another platform may load it.

82 Writing CMakel.ists Files

4.12 Advanced Commands

There are a few commands that can be very useful but are not typically used in writing
CMakelLists files. This section will discuss a few of these commands and when they are
useful. First consider the add dependencies command which creates a dependency
between two targets. CMake automatically creates dependencies between targets when it can
determine them. For example, CMake will automatically create a dependency for an
executable target that depends on a library target. The add dependencies command is
typically used to specify inter target dependencies between targets where at least one of the
targets is a custom target (see section 6.4 for more information on custom targets).

The include regular expression command also relates to dependencies. This
command controls the regular expression that is used for tracing source code dependencies.
By default CMake will trace all the dependencies for a source file including system include
files such as stdio.h. If you specify a regular expression with the
include regular expression command that regular expression will be used to limit
what include files are processed. For example; if your software project’s include files all
started with the prefix foo (e.g. fooMain.c fooStruct.h etc) then you could specify a
regular expression of ~foo.*s to limit the dependency checking to just the files of your
project.

Occasionally you might want to get a listing of all the source files that another source file
depends on. This is useful when you have a program that uses pieces of a large library but you
are not sure what pieces it is using. The output required files command will take a
source file and produce a list of all the other source files it depends on. You could then use
this list to produce a reduced version of the library that only contains the necessary files for
your program.

Some tools such as Rational Purify on the Sun platform are run by inserting an extra
command before the final link step. So, instead of

;CC foo.o —-o foo
The link step would be
;purify CC foo.o -o foo

It is possible to do this with CMake. To run an extra program in front of the link line change
the rule variables CMAKE CxXX LINK EXECUTABLE, and CMAKE C LINK EXECUTABLE. Rule
variables are described in chapter 11. The values for these variables are contained in the file
Modules/CMakeDefaultMakeRuleVariables.cmake, and they are sometimes redefined

Advanced Commands 83

in Modules/Platform/*.cmake. Make sure it is set after the PROJECT command in the
CMakelLists file. Here is a small example of using purify to link a program called foo:

'project (foo)

. set (CMAKE CXX LINK EXECUTABLE
‘ "purify ${CMAKE CXX LINK EXECUTABLE}")
. add_executable (foo foo.cxx)

Of course, for a generic CMakeLists file you should have some if checks for the correct
platform. This will only work for the Makefile generators because the rule variables are not
used by the IDE generators. Another option would be to use $(PURIFY) instead of plain
purify. This would pass through CMake into the Makefile and be a make variable. The
variable could be defined on the command line like this: make PURIFY=purify. If not
specified then it would just use the regular rule for linking a C++ executable as PURIFY
would be expanded by make to nothing.

Chapter 5

System Inspection

This chapter will describe how you can use CMake to inspect the environment of the system
on which the software is being built. This is a critical factor in creating cross-platform
applications or libraries. It covers how to find and use system and user installed header files
and libraries. It also covers some of the more advanced features of CMake including the
try compile and try run commands. These commands are extremely powerful tools for
determining the capabilities of the system and compiler that is hosting your software. This
chapter also describes how to generate configured files and how to cross compile with
CMake. Finally, the steps required to enable a project for the find package command are
covered, explaining how to create a <Package>Config.cmake file and other required files.

5.1 Using Header Files and Libraries

Many C and C++ programs depend on external libraries. However, when it comes to the
practical aspects of compiling and linking a project, taking advantage of existing libraries can
be difficult for both developers and users. Problems usually show up as soon as the sofiware
is built on a system other than that on which it was developed. Assumptions regarding where
libraries and header files are located become obvious when they are not installed in the same
place on the new computer and the build system is unable to find them. CMake has many
features to aid developers in the integration of external software libraries into a project.

The CMake commands that are most relevant to this type of integration are the find file,
find library, find path, find program, and find package commands. For most C
and C++ libraries, a combination of find library and find path will be enough to
compile and link with an installed library. £ind library can be used to locate, or allow a

86 System Inspection

user to locate a library, and find path can be used to find the path to a representative
include file from the project. For example, if you wanted to link to the tiff library, you could
use the following commands in your CMakeLists.txt file:

4 find libtiff, looking in some standard places
find library (TIFF_LIBRARY
. NAMES tiff tiff2
PATHS /usr/local/lib /usr/lib
)

find tiff.h looking in some standard places
 find path (TIFF INCLUDES tiff.h
/usr/local/include
/usr/include

)
. include directories (${TIFF INCLUDES})
. add_executable (mytiff mytiff.c)

. target link libraries (myprogram ${TIFF_LIBRARY})

The first command used is find library which in this case will look for a library with the
name tiff or tiff2. The find library command only requires the library’s base name
without any platform specific prefixes or suffixes, such as lib and .dll. The appropriate
prefixes and suffixes for the system running CMake will be added to the library name
automatically when CMake attempts to find it. All the FIND * commands will look in the
PATH environment variable. In addition, the commands allow the specification of additional
search paths as arguments listed after the PATHS marker argument. As well as supporting
standard paths, windows registry entries and environment variables can be used to construct
search paths. The syntax for registry entries is the following:

- [HKEY CURRENT USER\\Software\\Kitware\\Path;Buildl]

Because software can be installed in many different places, it is impossible for CMake to find
the library every time, but most standard installations should be covered. The find *
commands automatically create a cache variable so that users can override or specify the
location from the CMake GUI. This way if CMake is unable to locate the files it is looking for
users will still have an opportunity to specify them. If CMake does not find a file, the value is
set to VAR-NOTFOUND. This value tells CMake that it should continue looking each time
CMake’s configure step is run. Note that in if statements, values of VAR-NOTFOUND will
evaluate as false.

System Properties 87

The next command used is find path. This is a general purpose command that, in this
example, is used to locate a header file from the library. Header files and libraries are often
installed in different locations, and both locations are required to compile and link programs
that use them. find path is similar to find library, although it only supports one name.
It supports a list of search paths.

The next part of the CMakeLists file uses the variables created by the find * commands.
The variables can be used without checking for valid values as CMake will print an error
message notifying the user if any of the required variables have not been set. The user can
then set the cache values and reconfigure until the message goes away. Optionally, a
CMakel.ists file could use the i £ command to use alternative libraries or options to build the
project without the library if it cannot be found.

From the above example you should be able to see how using the £ind * commands can help
your software to compile on a wide variety of systems. It is worth noting that the find *
commands search for a match starting with the first argument and first path. So when listing
paths and library names you should list your preferred paths and names first. If there are
multiple versions of a library, and you would prefer tiff over tiff2, make sure you list them in
that order.

5.2 System Properties

Although it is a common practice in C and C++ code to add platform-specific code inside
preprocessor ifdef directives, for maximum portability this should be avoided. Software
should not be tuned to specific platforms with ifdefs, but rather to a canonical system
consisting of a set of features. Coding to specific systems makes the software less portable,
because systems and the features they support change with time, and even from system to
system. A feature that may not have worked on a platform in the past may be a required
feature for the platform in the future. The following code fragments illustrate the difference
between coding to a canonical system and a specific system:

. // coding to a feature
 #ifdef HAS_FOOBAR CALL
foobar () ;
. felse
myfoobar () ;
. #endif

\ // coding to specific platforms
. #if defined(SUN) && defined(HPUX) && !defined(GNUC)
‘ foobar () ;
. #else
myfoobar () ;

88 System Inspection

- #endif

The problem with the second approach is that the code will have to be modified for each new
platform on which the software is compiled. For example, a future version of SUN may no
longer have the foobar call. Using the HAS FOOBAR_ CALL approach, the software will work
as long as HAS FOOBAR_CALL is defined correctly, and this is where CMake can help. CMake
can be used to define HAS FOOBAR CALL correctly and automatically by making use of the
try compile and try run commands. These commands can be used to compile and run
small test programs during the CMake configure step. The test programs will be sent to the
compiler that will be used to build the project, and if errors occur the feature can be disabled.
These commands require that you write a small C or C++ program to test the feature. For
example, to test if the foobar call is provided on the system, try compiling a simple program
that uses foobar. First write the simple test program (testNeedFoobar.c in this example) and
then add the CMake calls to the CMakelLists file to try compiling that code. If the compilation
works then HAS FOOBAR_CALL will be set to true.

--- testNeedFoobar.c -----

#include <foobar.h>
main ()
{

foobar () ;

--— testNeedFoobar.cmake ---

try compile (HAS FOOBAR CALL
${CMAKE BINARY DIR}
${PROJECT_SOURCE_DIR}/testNeedFoobar.c
)

Now that HAS FOOBAR CALL is set correctly in CMake you can use it in your source code
through either the add definitions command or by configuring a header file. We
recommend configuring a header file as that file can be used by other projects that depend on
your library. This is discussed further in section 5.6.

Sometimes, just compiling a test program is not enough. In some cases, you may actually
want to compile and run a program to get its output. A good example of this is testing the byte
order of a machine. The following example shows how you can write a small program that
CMake will compile and then run to determine the byte order of a machine.

System Properties 89

J— TestByteOrder.c ------

Cint main () {
/* Are we most significant byte first or last */
union
{
long 1;
char c[sizeof (long)];
boug)
u.l = 1;
exit (u.c[sizeof (long) - 1] == 1);

try run (RUN_RESULT‘VAR
COMPILE RESULT VAR
${CMAKE BINARY DIR}
${PROJECT_ SOURCE_DIR}/Modules/TestByteOrder.c
OUTPUT VARIABLE OUTPUT
)

The return result of the run will go into RUN_RESULT VAR and the result of the compile will
go into COMPILE RESULT VAR, and any output from the run will go into OUTPUT. You can
use these variables to report debug information to the users of your project.

For small test programs the FILE command with the WRITE option can be used to create the
source file from the CMakeLists file. The following example tests the C compiler to verify
that it can be run.

- file (WRITE
${CMAKE BINARY DIR}/CMakeTmp/testCCompiler.c
"int main() {return 0;}"

)

try compile (CMAKE C COMPILER WORKS
S{CMAKE BINARY DIR}
${CMAKE BINARY DIR}/CMakeTmp/testCCompiler.c
OUTPUT VARIABLE OUTPUT
)

90 System Inspection

There are several predefined try-run and try-compile macros in the CMake/Modules
directory, some of which are listed below. These macros allow some common checks to be
performed without having to create a source file for each test. For detailed documentation or
to see how these macros work look at the implementation files for them in the
CMake/Modules directory of your CMake installation. Many of these macros will look at the
current value of the CMAKE REQUIRED FLAGS and CMAKE REQUIRED LIBRARIES variables
to add additional compile flags or link libraries to the test.

CheckFunctionExists.cmake

Checks to see if a C function is on a system. This macro takes two arguments, the
first is the name of the function to check for. The second is the variable to store the
result into. This macro does use CMAKE REQUIRED FLAGS and
CMAKE REQUIRED LIBRARIES if they are set.

CheckIncludeFile.cmake:

Checks for an include file on a system. This macro takes two arguments. The first is
the include file to look for and the second is the variable to store the result into.
Additional CFlags can be passed in as a third argument or by setting
CMAKE REQUIRED FLAGS.

CheckIncludeFileCXX.cmake

Check for an include file in a C++ program. This macro takes two arguments. The
first is the include file to look for and the second is the variable to store the result
into. Additional CFlags can be passed in as a third argument.

CheckIncludeFiles.cmake

Check for a group of include files. This macro takes two arguments. The first is the
include files to look for and the second is the variable to store the result into. This
macro does use CMAKE_REQUIRED FLAGS if it is set. This macro is useful when a
header file you are interested in checking for is dependent on including another
header file first.

CheckLibraryExists.cmake

Check to see if a library exists. This macro takes four arguments; the first is the name
of the library to check for. The second is the name of a function that should be in that
library. The third argument is the location of where the library should be found. The
fourth argument is a variable to store the result into. This macro uses
CMAKE REQUIRED FLAGS and CMAKE REQUIRED LIBRARIES ifthey are set.

CheckSymbolExists.cmake

Check to see if a symbol is defined in a header file. This macro takes three
arguments. The first argument is the symbol to look for. The second argument is a
list of header files to try including. The third argument is where the result is stored.

System Properties 91

This macro uses CMAKE REQUIRED FLAGS and CMAKE REQUIRED LIBRARIES if
they are set.

CheckTypeSize.cmake

Determines the size in bytes of a variable type. This macro takes two arguments. The
first argument is the type to evaluate. The second argument is where the result is
stored. Both CMAKE REQUIRED FLAGS and CMAKE REQUIRED LIBRARIES are
used if they are set.

CheckVariableExists.cmake

Checks to see if a global variable exists. This macro takes two arguments. The first
argument is the variable to look for. The second argument is the variable to store the
result in. This macro will prototype the named variable and then try to use it. If the
test program compiles then the variable exists. This will only work for C variables.
This macro uses CMAKE REQUIRED FLAGS and CMAKE REQUIRED LIBRARIES if
they are set. '

Consider the following example that shows a variety of these modules being used to compute
properties of the platform. At the beginning of the example four modules are loaded from
CMake. The remainder of the example uses the macros defined in those modules to test for
header files, libraries, symbols, and type sizes respectively.

i# Include all the necessary files for macros
- include (CheckIncludeFiles)
- include (CheckLibraryExists)
include (CheckSymbolExists)
- include (CheckTypeSize)

. # Check for header files
- set (INCLUDES "")
. CHECK_INCLUDE FILES ("${INCLUDES};winsock.h" HAVE WINSOCK_ H)

if (HAVE WINSOCK H)
i set (INCLUDES ${INCLUDES} winsock.h)
endif (HAVE WINSOCK_ H)

- CHECK INCLUDE FILES ("${INCLUDES};io.h" HAVE IO H)
if (HAVE IO H)

; set (INCLUDES ${INCLUDES} io.h)

. endif (HAVE IO H)

‘# Check for all needed libraries
set (LIBS "")
CHECK LIBRARY EXISTS ("dl; ${LIBS}" dlopen ™" HAVE LIBDL)

92 System Inspection

if (HAVE LIBDL)
. set (LIBS S${LIBS} dl)
~endif (HAVE LIBDL)

CHECK_LIBRARY EXISTS ("ucb;${LIBS}" gethostname "" HAVE LIBUCB)
- if (HAVE LIBUCB)
‘ set (LIBS ${LIBS} ucb)
endif (HAVE LIBUCB)

Add the libraries we found to the libraries to use when
| # looking for symbols with the CHECK_SYMBOL_ EXISTS macro
5set (CMAKE _REQUIRED LIBRARIES ${LIBS})

_ # Check for some functions that are used
CHECK SYMBOL EXISTS (socket "S{INCLUDES}" HAVE SOCKET)
- CHECK SYMBOL EXISTS (poll "S{INCLUDES}" HAVE POLL)

' # Various type sizes
CHECK TYPE SIZE (int SIZEQOF INT)
CHECK TYPE SIZE (size t SIZEOF SIZE T)

For more advanced try compile and try run operations, it may be desirable to pass flags
to the compiler, or to CMake. Both commands support the optional arguments CMAKE FLAGS
and COMPILE DEFINITIONS. CMAKE FLAGS can be used to pass ~-DVAR: TYPE=VALUE flags
to CMake. The value of COMPILE DEFINITIONS is passed directly to the compiler command
line.

5.3 Finding Packages

Many software projects provide tools and libraries meant as building blocks for other projects
and applications. CMake projects that depend on outside packages locate their dependencies
using the find package command. A typical invocation is of the form

find package (<Package> [version])

where “<Package>" is the name of the package to be found, and “[version]” is an optional
version request (of the form major[.minor.[patch]]). See Appendix C — Listfile
Commands for the full command documentation. The command’s notion of a package is
distinct from that of CPack, which is meant for creating source and binary distributions and
installers.

Built-in Find Modules 93

The command operates in two modes: Module mode and Config mode. In Module mode the
command searches for a find-module: a file named "Find<Package>.cmake". It looks
first in the CMAKE MODULE_PATH and then in the CMake installation. If a find-module is
found, it is loaded to search for individual components of the package. Find-modules contain
package-specific knowledge of the libraries and other files they expect to find, and internally
use commands like find library to locate them. CMake provides find-modules for many
common packages; see Appendix D — Selected Modules. Find-modules are tedious and
difficult to write and maintain because they need very specific knowledge of every version of
the package to be found.

The Config mode of find package provides a powerful alternative through cooperation
with the package to be found. It enters this mode after failing to locate a find-module or when
explicitly requested by the caller. In Config mode the command searches for a package
configuration file: a file named “<Package>Config.cmake” or “<package>-
config.cmake” that is provided by the package to be found. Given the name of a package,
the find package command knows how to search deep inside installation prefixes for
locations like

<prefix>/lib/<package>/<package>-config.cmake

(see documentation of find package in Appendix C — Listfile Commands for a complete
list of locations). CMake creates a cache entry called “<Package> DIR” to store the location
found or allow the user to set it. Since a package configuration file comes with an installation
of its package, it knows exactly where to find everything provided by the installation. Once
the find package command locates the file it provides the locations of package components
without any additional searching.

The “[version]” option asks find package to locate a particular version of the package.
In Module mode, the command passes the request on to the find-module. In Config mode the
command looks next to each candidate package configuration file for a package version
file: a file named “<Package>ConfigVersion.cmake” or “<package>-config-
<version>.cmake”. The version file is loaded to test whether the package version is an
acceptable match for the version requested (see documentation of £ind package for the
version file API specification). If the version file claims compatibility the configuration file is
accepted, otherwise it is ignored. This approach allows each project to define its own rules for
version compatibility.

5.4 Built-in Find Modules

CMake has many predefined modules that can be found in the Modules subdirectory of
CMake. The modules can find many common software packages. See Appendix D — Selected
Modules for a detailed list.

94 System Inspection

Each Find<xx>.cmake module defines a set of variables that will allow a project to use the
software package once it is found. Those variables all start with the name of the software
being found <xx>. With CMake we have tried to establish a convention for naming these
variables, but you should read the comments at the top of the module for a more definitive
answer. The following variables are used by convention when needed:

<XX>_INCLUDE_DIRS
Where to find the package’s header files, typically <XX>.h, etc.

<XX> LIBRARIES
The libraries to link against to use <XX>. These include full paths.

<XX> DEFINITIONS

Preprocessor definitions to use when compiling code that uses <XX>.

<XX> EXECUTABLE
Where to find the <XX> tool that is part of the package.

<XX> <YY> EXECUTABLE
Where to find the <Y'Y> tool that comes with <XX>.

<XX> ROOT_DIR

Where to find the base directory of the installation of <XX>. This is useful for large
packages where you want to reference many files relative to a common base (or root)
directory.

<XX> VERSION_<YY>

Version <YY> of the package was found if true. Authors of find modules should
make sure at most one of these is ever true. For example TCL VERSION 84

<XX> <YY> FOUND
If false, then the optional <YY> part of <XX> package is not available.

<XX> FOUND

Set to false, or undefined, if we haven't found or don't want to use <XX>.

Not all of the variables are present in each of the FindxX.cmake files. However, the
<xx> FOUND should exist under most circumstances. If <xx> is a library, then
<xxX> LIBRARIES should also be defined, and <xx> INCLUDE DIR should usually be
defined.

How to Pass Parameters to a Compilation? 95

Modules can be included in a project either with the include command or the
find_package command.

! fiﬁ&fﬁackééékOpengL)
is equivalent to

include (5 (CHAKE_R0DT) /Modules/ 7indopent, crake
and

' include (FindOpenGL)

If the project converts over to CMake for its build system, then the £ind package will still
work if the package provides a <XX>Config.cmake file. How to create a CMake package is
described in section 5.7.

5.5 How to Pass Parameters to a Compilation?

Once you have determined all features of the system in which you are interested, it is time to
configure the software based on what has been found. There are two common ways to pass
this information to the compiler: on the compile line, and using a preconfigured header. The
first way is to pass definitions on the compile line. A preprocessor definition can be passed to
the compiler from a CMakeLists file with the add definitions command. For example, a
common practice in C code is to have the ability to selectively compile in/out debug
statements.

| ifdef DEBUG_BUILD
| printf ("the value of v is %d4d", v);
. #endif

A CMake variable could be used to turn on or off debug builds using the OPTION command:

. option (DEBUG BUILD
| "Build with extra debug print messages.")

| if (DEBUGﬁBUILD)
add definitions (-DDEBUG BUILD)
endif (DEBUG_BUILD)

96 System Inspection

Another example would be to tell the compiler the result of the previous HAS _FOOBAR CALL
test that was discussed earlier in this chapter. You could do this with the following:

if (HAS FOOBAR CALL)
add definitions (-DHAS FOOBAR CALL)
endif (HAS FOOBAR CALL)

.

If you want to pass preprocessor definitions at a finer level of granularity, you can use the
COMPILE DEFINITIONS property that is defined for directories, targets, and source files. For
example, the code

add library (mylib srcl.c src2.c)

add executable (myexe mainl.c)

set property (
DIRECTORY
PROPERTY COMPILE DEFINITIONS A AV=1
)

'setiproperty (

TARGET mylib
PROPERTY COMPILE DEFINITIONS B BV=2
)

set property (
SOURCE srcl.c
PROPERTY COMPILE DEFINITIONS C CV=3
)

will build the source files with these definitions:

‘srcl.c: -DA -DAV=1 -DB -DBV=2 -DC -DCV=3

src2.c: -DA -DAV=1 -DB -DBV=2

main2.c: -DA -DAV=1

When the add_definitions command is called with flags like "-Dx" the definitions are
extracted and added to the current directory’'s COMPILE DEFINITIONS property. When a new
subdirectory is created with add subdirectory the current state of the directory-level
property is used to initialize the same property in the subdirectory.

Note in the above example that the set property command will actually set the property
and replace any existing value. The command provides the APPEND option to add more
definitions without removing existing ones. For example, the code

How to Configure a Header File 97

set property (
SOURCE srcl.c
APPEND PROPERTY COMPILE DEFINITIONS D DV=4
)

will add the definitions "-DD -DDvV=4" when building srcl.c. Definitions may also be
added on a per-configuration basis using the COMPILE DEFINITIONS <CONFIG> property.
For example, the code

set property (
TARGET mylib
PROPERTY COMPILE DEFINITIONS DEBUG MYLIB DEBUG MODE
)

will build sources in mylib with -DMYLIB DEBUG MODE only when compiling in a Debug
configuration.

The second approach for passing definitions to source code is to configure a header file. For
maximum portability of a toolkit, it is recommended that —-D options are not required for the
compiler command line. Instead of command line options, CMake can be used to configure a
header file that applications can include. The header file will include all of the #define
macros needed to build the project. The problem with using compile line definitions can be
seen when building an application that in turn uses a library. If building the library correctly
relies on compile line definitions, then chances are that an application that uses the library
will also require the exact same set of compile line definitions. This puts a large burden on the
application writer to make sure they add the correct flags to match the library. If instead the
library’s build process configures a header file with all of the required definitions, then any
application that uses the library will automatically get the correct definitions when that header
file is included. A definition can often change the size of a structure or class, and if the
macros are not exactly the same during the build process of the library and the application
linking to the library, the application may reference the “wrong part” of a class or struct and
crash unexpectedly.

5.6 How to Configure a Header File

Hopefully we have convinced you that configured header files are the right choice for most
software projects. To configure a file with CMake the configure file command is used.
This command requires an input file that is parsed by CMake which then produces an output
file with all variables expanded or replaced. There are three ways to specify a variable in an
input file for configure file.

98 System Inspection

i #cmaked?fine’VARiAB;EW’
If VARIABLE is true, then the result will be:
 #défine VARiAépﬁ,,
If VARIABLE is false, then the result will be:
/k* ’ V#uynde{f VV<A4R’£ABJ:'_.EN * /"
${VARIABLE}

This is simply replaced by the value of VARIABLE.

@VARIABLE@
This is simply replaced by the value of VARIABLE.

Since the ${} syntax is commonly used by other languages, there is a way to tell the
configure file command to only expand variables using the @var@ syntax. This is done
by passing the @ONLY option to the command. This is useful if you are configuring a script
that may contain ${var} strings that you want to preserve. This is important because CMake
will replace all occurrences of $ {var} with the empty string if var is not defined in CMake.

The following example configures a .h file for a project that contains preprocessor variables.
The first definition indicates if the FOOBAR call exists in the library, and the next one contains
the path to the build tree.

---- CMakelists.txt file-----
Configure a file from the source tree

called projectConfigure.h.in and put
the resulting configured file in the build

F= H W I

tree and call it projectConfigure.h
configure file (

S{PRCJECT_ SOURCE_DIR}/projectConfigure.h.in
${PROJECT BINARY DIR}/projectConfigure.h)

Creating CMake Package Configuration Files 99

| ————— projectConfigure.h.in file------

 /* define a variable to tell the code if the */
. /* foobar call is available on this system */

- #cmakedefine HAS FOOBAR CALL

é/* define a variable with the path to the */
. /* build directory */
f#define PROJECT BINARY DIR "s{PROJECT_BINARY‘DIR}"

It is important to configure files into the binary tree, not the source tree. A single source tree
may be shared by multiple build trees or platforms. By configuring files into the binary tree
the differences between builds or platforms will be kept isolated in the build tree, where it will
not corrupt other builds. This means that you will need to include the directory of the build
tree where you configured the header file into the project’s list of include directories using the
include directories command.

5.7 Creating CMake Package Configuration Files

Projects must provide package configuration files so that outside applications can find them.
Consider a simple project “Gromit” providing an executable to generate source code and a
library against which the generated code must link. The CMakeLists.txt file might start
with:

cmake minimum required (VERSION 2.6.3)
- project (Gromit C)
- set (version 1.0)

~ # Create library and executable.
' add library (gromit STATIC gromit.c gromit.h)
add_executable (gromit—-gen gromit-gen.c)

In order to install Gromit and export its targets for use by outside projects, one adds the code

Install and export the targets.
! install (FILES gromit.h DESTINATION include/gromit-${version})
. install (TARGETS gromit gromit-gen
DESTINATION lib/gromit-${version}
! EXPORT gromit-targets)
. install (EXPORT gromit-targets
DESTINATION lib/gromit-${version})

100 System Inspection

as described in Section 0. Finally, Gromit must provide a package configuration file in its
installation tree so that outside projects can locate it with £ind package:

: # Create and install package configuration and version files.
- configure file (
${Gromit SOURCE DIR}/pkg/gromit-config.cmake.in
. ${Gromit BINARY DIR}/pkg/gromit-config.cmake QONLY)

configure file (
${Gromit SOURCE DIR}/gromit-config-version.cmake.in
${Gromit BINARY DIR}/gromit-config-version.cmake @ONLY)

- install (FILES ${Gromit BINARY DIR}/pkg/gromit-config.cmake
! ${Gromit BINARY DIR}/gromit-config-version.cmake
DESTINATION lib/gromit-${version})

This code configures and installs the package configuration file and a corresponding package
version file. The package configuration input file gromit-config.cmake. in has the code,

. # Compute installation prefix relative to this file.
get filename component (dir "${CMAKE CURRENT LIST FILE}" PATH)
get filename component (prefix "${ dir}/../.." ABSOLUTE)

Import the targets.
include ("${ prefix}/lib/gromit-@version@/gromit-targets.cmake")

o Report other information.
- set (gromit INCLUDE DIRS "${ prefix}/include/gromit-@version@")

After installation the configured package configuration file gromit-config.cmake knows
the locations of other installed files relative to itself. The corresponding package version file
is configured from its input file gromit-config-version.cmake.in which contains code
such as,

set (PACKAGE VERSION "@version@")
' if (NOT "${PACKAGE FIND VERSION}" VERSION GREATER "@version@")
set (PACKAGE VERSION COMPATIBLE 1) # compatible with older
if ("S${PACKAGE FIND VERSION}" VERSION EQUAL "@version@")
set (PACKAGE VERSION_EXACT 1) # exact match for this version
endif ()
endif ()

Creating CMake Package Configuration Files 101

" An application that uses the Gromit package might create a CMake file that looks like this:

:cmake_minimum_required (VERSION 2.6.3)
. project (MyProject C)
- find package (gromit 1.0 REQUIRED)
. include directories (${gromit INCLUDE DIRS})
- # run imported executable
- add custom command (OUTPUT generated.c
COMMAND gromit-gen generated.c)

- add_executable (myexe generated.c) ‘
;target_linkﬁlibraries (myexe gromit) # link to imported library |

The call to find package locates an installation of Gromit or terminates with an error
message if none can be found (due to REQUIRED). After the command succeeds, the Gromit
package configuration file gromit-config.cmake has been loaded, so Gromit targets have
been imported and variables like gromit INCLUDE DIRS have been defined.

The above example creates a package configuration file and places it in the install tree.
One may also create a package configuration file in the build tree to allow applications to
use the project without installation. In order to do this, one extends Gromit’s CMake file with
the code:

| # Make project useable from build tree.
. export (TARGETS gromit gromit-gen FILE gromit-targets.cmake)
configure file (${Gromit SOURCE DIR}/gromit-config.cmake.in
${Gromit BINARY DIR}/gromit-config.cmake @ONLY)

This configure file call uses a different input file, gromit-config.cmake.in,
containing

. # Import the targets.
include ("@Gromit BINARY DIR@/gromit-targets.cmake")

Report other information.
 set(gromit INCLUDE DIRS "@Gromit SOURCE DIR@")

The package configuration file gromit-config.cmake placed in the build tree provides the
same information to an outside project as that in the install tree, but refers to files in the
source and build trees. It shares an identical package version file gromit-config-
version.cmake with that placed in the install tree.

Chapter 6

Custom Commands and Targets

Frequently, the build process for a software project goes beyond simply compiling libraries
and executables. In many cases additional tasks may be required during or after the build
process. Common examples include: compiling documentation using a documentation
package, generating source files by running another executable, generating files using tools
for which CMake doesn’t have rules (such as lex, and yacc), moving the resulting
executables, post processing the executable, etc. CMake supports these additional tasks using
custom commands and custom targets. This chapter will describe how to use custom
commands and targets to perform complex tasks that CMake does not inherently support.

6.1 Portable Custom Commands

Before going into detail on how to use custom commands, we will discuss how to deal with
some of their portability issues. Custom commands typically involve running programs with
files as inputs or outputs. Even a simple command such as copying a file can be tricky to do in
a cross-platform way. For example, copying a file on UNIX is done with the cp command,
while on windows it is done with the copy command. To make matters worse, frequently the
names of the files will change on different platforms. Executables on Windows end with .exe
while on UNIX they do not. Even between UNIX implementations there are differences such
as what extensions are used for shared libraries; .so, .sl, .dylib, etc.

CMake provides two main tools for handling these differences. The first is the -E option
(short for execute) to cmake. When the cmake executable is passed the ~E option it acts as a
general purpose cross-platform utility command. The arguments following the -E option
indicate what cmake should do. Some of the options include:

104 Custom Commands and Targets

chdir dir command args

Changes the current directory to dir and then execute the command with the
provided arguments.

copy file destination
Copies a file from one directory or filename to another.

copy_if different in-file out-file

copy it different first checks to see if the files are different before copying them.
copy_if different is critical in many rules since the build process is based on file
modification times. If the copied file is used as the input to another build rule then
copy_if different can eliminate unnecessary recompilations.

copy_directory source destination

This option copies the source directory including any subdirectories to the
destination directory.

remove filel file2 ...
Removes the listed files from the disk.

echo string

Echos a string to the console. This is useful for providing output during the build
process.

time command args

Runs the command and times its execution.

These options provide a platform independent way to perform a few common tasks. The
cmake executable can be referenced by using the CMAKE COMMAND variable in your
CMakelLists files as later examples will show.

The second tool CMake provides to address portability issues is a number of variables
describing the characteristics of the platform. While most of these are covered in Appendix A
- Variables, some are particularly useful for custom commands.

EXE_EXTENSION

This is the file extension for executables. Typically nothing on UNIX and .exe on
Windows

CMAKE_CFG_INTDIR

Development environments such as Visual Studio and Xcode use subdirectories
based on the build type selected, such as Release or Debug. When performing a

Using add custom command on a Target 105

custom command on a library, executable or object file you will typically need the
full path to the file. CMAKE_CFG_INTDIR on UNIX will typically be ". /" while for
Visual Studio it will be set to "$ (INTDIR) /", which at build time will be replaced
by the selected configuration.

CMAKE_CURRENT BINARY_ DIR

This is the full path to the output directory associated with the current CMakeLists
file. This may be different from PROJECT BINARY DIR which is the full path to the
top of the current project’s binary tree.

CMAKE_CURRENT _SOURCE_DIR

This is the full path to the source directory associated with the current CMakeLists
file. This may be different from PROJECT SOURCE DIR which is the full path to the
top of the current project’s source tree.

EXECUTABLE_OUTPUT_PATH

Some projects specify a directory into which all the executables should be built. This
variable, if defined, holds the full path to that directory.

LIBRARY_OUTPUT_PATH

Some projects specify a directory into which all the libraries should be built. This
variable, if defined, holds the full path to that directory.

There are also a series of variables such as CMAKE SHARED MODULE PREFIX and ...SUFFIX
that describe the current platform’s prefix and suffix for that type of file. These variables are
defined for SHARED MODULE, SHARED LIBRARY, and LIBRARY. Using these variables, you
can typically construct the full path to any CMake generated file that you need to. For
libraries and executable targets you can also use get target property with the
LOCATION argument to get the full path to the target.

CMake doesn’t limit you to using cmake -E in all your commands. You can use any
command that you like, although you should consider portability issues when doing it. A
common practice is to use find program to find an executable (perl for example), and then
use that executable in your custom commands.

6.2 Using add_custom_command on a Target

Now we will consider the signature for add custom command. In Makefile terminology
add_custom command adds a rule to a Makefile. For those more familiar with Visual
Studio, it adds a custom build step to a file. add_custom command has two main signatures,
one for adding a custom command to a target and one for adding a custom command to build
a file. When adding a custom command to a target the signature is as follows:

106 Custom Commands and Targets

add custom command (
TARGET target
PRE BUILD | PRE LINK | POST BUILD
COMMAND command [ARGS argl arg2 arg3 ..]
[COMMAND command [ARGS argl arg2 arg3 ..] ..]
[COMMENT comment]
)

The target is the name of a CMake target (executable, library, or custom) to which you want
to add the custom command. There is a choice of when the custom command should be
executed. PRE BUILD indicates that the command should be executed before any other
dependencies for the target are built. PRE_LINK indicates that the command should be
executed after the dependencies are all built, but before the actual link command.
POST_BUILD indicates that the custom command should be executed after the target has been
built. The COMMAND argument is the command (executable) to run and ARGS provides an
optional list of arguments to the command. Finally the COMMENT argument can be used to
provide a quoted string to be used as output when this custom command is run. This is useful
if you want to provide some feedback or documentation on what is happening during the
build. You can specify as many commands as you want for a custom command. They will be
executed in the order specified.

How to Copy an Executable Once it is Built?

Now let us consider a simple custom command for copying an executable once it has been
built.

first define the executable target as usual
add executable (Foo bar.c)

~ # get where the executable will be located
get target property (EXE LOC Foo LOCATION)

~ # then add the custom command to copy it
add _custom command (
TARGET Foo
POST BUILD
COMMAND ${CMAKE COMMAND}
ARGS -E copy ${EXE LOC} /testing department/files
)

The first command in this example is the standard command for creating an executable from a
list of source files. In this case an executable named Foo is created from the source file
bar.c. The next command is get target property which will set the variable called

Using add custom command to Generate a File 107

EXE LoC to where the executable will be built. Next is the add custom command
invocation. In this case the target is simply Foo and we are adding a post build command. The
command to execute is cmake which has its full path specified in the CMAKE COMMAND
variable. Its arguments are "-E copy" and the source and destination locations. In this case it
will copy the ©Foo executable from where it was Dbuilt into the
/testing department/files directory. Note that the TARGET parameter accepts a
CMake target (Foo in this example), but most commands such as cmake -E copy will
require the full path to the executable which can be retrieved using GET TARGET PROPERTY.

6.3 Using add_custom_command to Generate a File

The second use for add_custom_command is to add a rule for how to build an output file. In
this case the rule provided will replace any current rules for building that file. The signature is
as follows: '
add_custom_ command (OUTPUT outputl [output2 ..]

COMMAND command [ARGS [args...]]

[COMMAND command [ARGS argl arg2 arg3 ..] ..]

[MAIN DEPENDENCY depend]

[DEPENDS [depends...]]

[COMMENT comment]

)

The ouTpUT is the file (or files) that will result from running this custom command, the
COMMAND and ARGS parameters are the command to execute and the arguments to pass to it.
As with the prior signature you can have as many commands as you wish. The DEPENDS are
files or executables on which this custom command depends. If any of these dependencies
change this custom command will re-execute. The MAIN DEPENDENCY is an optional
argument that acts as a regular dependency and under Visual Studio it provides a suggestion
for what file to hang this custom command onto. If the MAIN_DEPENDENCY is not specified
then one will be created automatically by CMake. The MAIN DEPENDENCY should not be a
regular .c or .cxx file since the custom command will override the default build rule for the
file. Finally the optional COMMENT is a comment that may be used by some generators to
provide additional information during the build process.

Using an Executable to Build a Source File

Sometimes a software project builds an executable, which is then used for generating source
files that are then used to build other executables or libraries. This may sound like an odd
case, but it occurs quite frequently. One example is the build process for the TIFF library,
which creates an executable that is then run to generate a source file that has system specific
information in it. This file is then used as a source file in building the main TIFF library.
Another example is the Visualization Toolkit that builds an executable called vtkWrapTcl

108 Custom Commands and Targets

that wraps C++ classes into Tcl. The executable is built and then used to create more source
files for the build process.

FHEFHHHAHEF A AR A R
Test using a compiled program to create a file
CHR AR R R A R R

* # add the executable that will create the file
build creator executable from creator.cxx
add executable (creator creator.cxx)

get target property (creator EXE LOC LOCATION)

4 add the custom command to produce created.c
add custom command (J
OUTPUT ${PROJECT BINARY DIR}/created.c
DEPENDS creator
COMMAND ${EXE_LOC}
ARGS ${PROJECT BINARY DIR}/created.c
)

add an executable that uses created.c
add _executable (Foo ${PROJECT BINARY DIR}/created.c)

The first part of this example produces the creator executable from the source file
creator.cxx. The custom command then sets up a rule for producing the source file
created.c by running the executable creator. The custom command depends on the
creator target and writes its result into the output tree (PROJECT BINARY DIR). Finally, an
executable target called Foo is added that is built using the created. ¢ source file. CMake
will create all the required rules in the Makefile (or Visual Studio workspace) such that when
you build the project, first the creator executable will be built, then it will be run to create
created. c, which will then be used to build the Foo executable.

6.4 Adding a Custom Target

In the discussion so far CMake targets have generally referred to executables and libraries.
CMake supports a more general notion of targets, called custom targets, that can be used
whenever you want the notion of a target but the end product will not be a library or
executable. Examples of custom targets include targets to build documentation, run tests, or
update web pages. To add a custom target you use the add custom target command with
the following signature:

Adding a Custom Target 109

- add_custom_target (name [ALL]

| [command arg arg arg ...]
[DEPENDS depend depend depend ...]
)

The name specified will be the name given to the target. You can use that name to specifically
build that target with Makefiles (make name) or Visual Studio (right click on the target and
then select Build). If the optional ALL argument is specified then this target will be included
in the ALL_ BUILD target and will automatically be built whenever the Makefile or Project is
built. The command and arguments are optional, and if specified will be added to the target as
a post build command. For custom targets that will only execute a command this is all you
will need. More complex custom targets may depend on other files, in these cases the
DEPENDS arguments are used to list what files this target depends on. We will consider
examples of both cases. First let us look at a custom target that has no dependencies:

. add custom target (FooJAR ALL
${JAR} -cvf "\"${PROJECT BINARY DIR}/Foo.jar\""
"\"${PROJECT SOURCE DIR}/Java\""

With the above definition, whenever the FooJAR target is built it will run Java’s Archiver
(jar) to create the Foo.jar file from java classes in the ${PROJECT SOURCE DIR}/Java
directory. In essence this type of custom target allows the developer to tie a command to a
target so that it can be conveniently invoked during the build process. Now let us consider a
more complex example that roughly models the generation of PDF files from LaTeX. In this
case the custom target depends on other generated files (mainly the end product .pdf files):

. # Add the rule to build the .dvi file from the .tex
file. This relies on LATEX being set correctly
#
add custom command (
OUTPUT ${PROJECT BINARY DIR}/docl.dvi
DEPENDS ${PROJECT SOURCE DIR}/docl.tex
COMMAND ${LATEX}
ARGS ${PROJECT SOURCE DIR}/docl.tex
)

Add the rule to produce the .pdf file from the .dvi
- # file. This relies on DVIPDF being set correctly
#
add custom command (
ouTPUT ${PROJECTfBINARYADIR}/docl.pdf

110 Custom Commands and Targets

DEPENDS ${PROJECT BINARY DIR}/docl.dvi
COMMAND ${DVIPDF}

ARGS ${PROJECT BINARY DIR}/docl.dvi
)

" finally add the custom target that when invoked
will cause the generation of the pdf file
R
add custom target (TDocument ALL
DEPENDS ${PROJECT BINARY DIR}/docl.pdf
)

This example makes use of both add custom command and add custom target. The
two add_custom_command invocations are used to specify the rules for producing a .pdf file
from a .tex file. In this case there are two steps and two custom commands. First a .dvi file is
produced from the .tex file by running LaTeX, then the .dvi file is processed to produce the
desired .pdf file. Finally a custom target is added called TDocument. Its command simply
echoes out what it is doing, while the real work is done by the two custom commands. The
DEPENDS argument sets up a dependency between the custom target and the custom
commands. When TDocument is built it will first look to see if all of its dependencies are
built. If any are not built it will invoke the appropriate custom commands to build them. This
example can be shortened by combining the two custom commands into one custom
command, as shown in the following example:

" # Add the rule to build the .pdf file from the .tex
file. This relies on LATEX and DVIPDF being set correctly
#
add custom_ command (
OUTPUT ${PROJECT_BINARY_DIR}/docl.pdf
DEPENDS ${PROJECT SOURCE DIR}/docl.tex
COMMAND ${LATEX}

ARGS $ {PROJECT SOURCE DIR}/docl.tex
COMMAND $ {DVIPDF}
ARGS $ {PROJECT BINARY DIR}/docl.dvi

)

finally add the custom target that when invoked
will cause the generation of the pdf file
#
add_custom_target (TDocument ALL
DEPENDS ${PROJECT BINARY DIR}/docl.pdf
)

Specifying Dependencies and Outputs 111

Now consider the case in which the documentation consists of multiple files. The above
example can be modified to handle many files using a list of inputs and a foreach loop. For
example:

;# set the list of documents to process
- set (DOCS docl doc2 doc3)

i# add the custom commands for each document
' foreach (DOC ${DOCS})

add custom command (
OUTPUT ${PROJECT BINARY DIR}/${DOC}.pdf
DEPENDS ${PROJECT SOURCE DIR}/${DOC}.tex
COMMAND ${LATEX}

ARGS ${PROJECT SOURCE DIR}/${DOC}.tex
COMMAND ${DVIPDF}
ARGS ${PROJECT BINARY DIR}/${DOC}.dvi

)

build a list of all the results

set (DOC RESULTS ${DOC_RESULTS}
${PROJECT BINARY DIR}/${DOC}.pdf
)

:endforeach (DOC)

L finally add the custom target that when invoked
' # will cause the generation of the pdf file
#
>addxcustom_target (Thocument ALL
DEPENDS ${DOC_RESULTS}
)

In this example building the custom target TDocument will cause all of the specified .pdf files
to be generated. Adding a new document to the list is simply a matter of adding its filename to
the DOCS variable at the top of the example.

6.5 Specifying Dependencies and Outputs

When using custom commands and custom targets you will often be specifying dependencies.
When you specify a dependency or the output of a custom command you should always
specify the full path. For example, if the command produces foo.h in the binary tree then its

112 Custom Commands and Targets

output should be something like ${PROJECT BINARY DIR}/foo.h. CMake will try to
determine the correct path for the file if it is not specified, complex projects frequently end up
using files in both the source and build trees, this can eventually lead to errors if the full paths
are not specified.

When specifying a target as a dependency you can leave off the full path and executable
_ extension, referencing it simply by its name. Consider the specification of the generator target
as an add custom_command dependency in the example on page 108. CMake recognizes
creator as matching an existing target and properly handles the dependencies.

6.6 ‘/When There Isn't One Rule For One Output

There are a couple of unusual cases that can arise when using custom commands that warrant
further explanation. The first is a case where one command (or executable) can create
multiple outputs, and the second is the case where multiple commands can be used to create a
single output.

A Single Command Producing Multiple Outputs

In CMake a custom command can produce multiple outputs simply by listing multiple outputs
after the OUTPUT keyword. CMake will create the correct rules for your build system so that
no matter which output is required for a target the right rules will be run. If the executable
happens to produce a few outputs, but the build process is only using one of them, then you
can simply ignore the other outputs when creating your custom command. Say that the
executable produces a source file that is used in the build process and also an execution log
that is not used. The custom command should specify the source file as the output and ignore
the fact that a log file is also generated.

Another case of having one command with multiple outputs is the case where the command is
the same but the arguments to it change. This is effectively the same as having a different
command and each case should have its own custom command. An example of this was the
documentation example on page 111, where a custom command was added for each .tex file.
The command is the same but the arguments passed to it change each time.

Having One Output That Can Be Generated By Different Commands

In rare cases you may find that you have more than one command that you can use to generate
an output. Most build systems such as make and Visual Studio do not support this and
likewise CMake does not. There are two common approaches that can be used to resolve this.
If you truly have two different commands that produce the same output, and no other
significant outputs, then you can simply pick one of them and create a custom command for
that one.

When There Isn’t One Rule For One Output 113

In the more complex case there are multiple commands with multiple outputs. For example:

jCommandl produces foo.h and bar.h
| Command? produces widget.h and bar.h

There are a few approaches that can be used in this case. In some cases you might just
combine both commands and all three outputs into a single custom command, so that
whenever one output is required all three are built at the same time. You could also create
three custom commands, one for each unique output. The custom command for foo.h would
invoke Command] while the one for widget .h would invoke Command2. When specifying
the custom command for bar.h you could choose either Commandl or Command?2.

Chapter 7

Converting Existing Systems to CMake

For many people the first thing they will do with CMake is to convert an existing project from
using an older build system to use CMake. In many cases this can be a fairly easy process, but
there are a few issues to consider. This section will address those issues and provide some
suggestions for effectively converting a project over to CMake. The first issue to consider
when converting to CMake is the project's directory structure.

7.1 Source Code Directory Structures

Most small projects will have their source code in either the top level directory or in a
directory named src or source. Even if all of the source code is in a subdirectory we highly
recommend creating a CMakeLists file for the top level directory. There are two reasons for
this. First it can be confusing to some people that they must run CMake on the subdirectory of
the project instead of the main directory. Second, you may want to install documentation or
other support files from the other directories. By having a CMakeLists file at the top of the
project you can use the add_subdirectory command to step down into the documentation
directory where its CMakeLists file can install the documentation (you can have a
CMakelLists file for a documentation directory with no targets or source code).

For projects that have source code in multiple directories there are a few options. One option
that many Makefile based projects use is to have a single Makefile at the top level directory
that lists all the source files to compile in their subdirectories. For example:

116 Converting Existing Systems to CMake

SOURCES=\
subdirl/foo.cxx \
subdirl/foo2.cxx \
subdir2/gah.cxx \
subdir2/bar.cxx

This approach works just as well with CMake using a similar syntax:

set (SOURCES
subdirl/foo.cxx
subdirl/foo2.cxx
subdirl/gah.cxx
subdir2/bar.cxx

)

Another option is to have each subdirectory build a library or libraries that can then be linked
into the executables. In that case each subdirectory would define its own list of source files
and add the appropriate targets. A third option is a mixture of the first two. Each subdirectory
can have a CMakeLists file that lists its sources, but the top level CMakeLists file will not use
the add subdirectory command to step into the subdirectories. Instead the top level
CMakeLists file will use the include command to include each of the subdirectory’s
CMakelLists files. For example, a top level CMakeLists file might include the following code:

collect the files for subdirl

include (subdirl/CMakeLists.txt)
foreach (FILE S$S{FILES})

set (subdirlFiles ${subdirlFiles} subdirl/S${FILE})
endforeach (FILE)

 # collect the files for subdir?2
- include (subdir2/CMakelists.txt)
. foreach (FILE S${FILES})
set (subdir2Files ${subdir2Files} subdir2/S${FILE})
endforeach (FILE)

add the source files to the executable
add executable (foo ${subdirlFiles} ${subdir2Files})

While the CMakelLists files in the subdirectories might look like the following:

Build Directories 117

list the source files for this directory
set (FILES

fool.cxx

foo2.cxx

)

The approach you use is entirely up to you. For large projects, having multiple shared libraries
can certainly improve build times when changes are made. For smaller projects the other two
approaches have their advantages. The main suggestion here is to choose a strategy and stick
with it.

7.2 Build Directories

The next issue to consider is where to put the resulting object files, libraries, and executables.
There are a few different approaches commonly used, and some work better with CMake than
others. Probably the most common approach is to produce the binary files in the same
directory as the source files. For some Windows generators such as Visual Studio they are
actually kept in a subdirectory matching the selected configuration, e.g. debug, release, etc.
CMake supports this approach by default. A closely related approach is to put the binary files
into a separate tree that has the same structure as the source tree. For example if the source
tree looked like the following;

foo/
subdirl
subdir2

the binary tree might look like:

foobin/
subdirl
subdir?2

CMake also supports this structure by default. Switching between in-source builds and out-of-
source builds is simply a matter of changing the binary directory in CMake (see How to Run
CMake? on page 10). Note that if you have already done an in-source build and want to
switch to an out of source build, you should start with a fresh copy of the source tree. If you
need to support multiple architectures from one source tree we highly recommend a directory
structure like the following:

118 Converting Existing Systems to CMake

projectfoo/
foo/
subdirl
subdir?2
foo-linux/
subdirl
subdir?2
foo-solaris/
subdirl
subdir?
foo-hpux/
subdirl
subdir?2

That way each architecture has its own build directory which will not interfere with any other
architecture. Remember that not only are the object files kept in the binary directories but also
any configured files are typically written to the binary tree. Another tree structure found
primarily on UNIX projects is one where the binary files for different architectures are kept in
subdirectories of the source tree. (see below) CMake does not work well with this structure,
so we recommend switching to the separate build tree structure shown above.

. foo/

subdirl/
linux
solaris
hpux

subdir2/
linux
solaris
hpux

CMake provides two variables for controlling where binary targets are written. They are the
EXECUTABLE OUTPUT PATH and LIBRARY OUTPUT_ PATH variables. These variables control
where the resulting libraries and executables will be written respectively. Setting these
enables a project to place all the libraries and executables into a single directory. For projects
with many subdirectories this can be a real time saver. A typical implementation is listed
below:

Useful CMake Commands When Converting Projects 119

. # Setup output directories.
set (LIBRARY OUTPUT PATH
${PROJECT_BINARY_DIR}/bin
CACHE PATH
"Single directory for all libraries."

)

set (EXECUTABLE OUTPUT PATH
${PROJECT BINARY DIR}/bin
CACHE PATH
"Single directory for all executables."

)

mark as advanced (
LIBRARY OUTPUT PATH
EXECUTABLE OUTPUT_ PATH
)

The two variables are set to the bin subdirectory of the project's binary tree (in this example
the bin subdirectory could just as easily be named "binaries"). These variables are cached so
that they will impact the entire project. Finally the variables are marked as advanced for two
reasons; first to reduce the number of choices the average user will see when running CMake,
and second to reduce the chances of someone changing them to another value. Setting these
variables is very useful for projects that make use of shared libraries (DLLs) since it collects
all of the shared libraries into one directory. If the executables are placed in the same
directory then they can find the required shared libraries more easily when run on Windows.

One final note on directory structures: with CMake it is perfectly acceptable to have a project
within a project. For example, within the Visualization Toolkit's source tree is a directory that
contains a complete copy of the zlib compression library. In writing the CMakeLists file for
that library we use the PROJECT command to create a project named VTKZLIB even though
it is within the VTK source tree and project. This has no real impact on VTK, but it does
allow us to build zlib independent of VTK without having to modify its CMakeLists file.

7.3 Useful CMake Commands When Converting Projects

There are a few CMake commands that can make the job of converting an existing project
easier and faster. The £ile command with the GLOB argument allows you to quickly set a
variable containing a list of all the files that match the glob expression. For example:

120 Converting Existing Systems to CMake

~# collect up the source files
. file (GLOB SRC_FILES *.cxx)

~ # create the executable
- add_executable (foo ${SRC_FILES})

will set the SRC_FILES variable to a list of all the ". cxx" files in the current source directory.
Then it will create an executable using those source files. Windows developers should be
aware that glob matches are case sensitive.

Two other useful commands are make directory and exec_program. By default CMake
will create all the output directories it needs for the object files, libraries, and executables.
With existing projects there may be some part of the build process that creates directories that
CMake would not normally create. In these cases the make directory command can be
used. As soon as CMake executes that command it will create the directory specified if it does
not already exist. The exec program command will execute a program when it is
encountered by CMake. This is useful if you want to quickly convert a UNIX autoconf
configured header file to CMake. Instead of doing the full conversion to CMake you could
run configure from an exec program command to generate the configured header file (on
UNIX only of course).

7.4 Converting UNIX Makefiles

If your project is currently based on standard UNIX Makefiles (not autoconf and Makefile.in
or imake) then their conversion to CMake should be fairly straightforward. Essentially for
every directory in your project that has a Makefile you will create a matching CMakeLists
file. How you handle multiple Makefiles in a directory really depends on their function. If the
additional Makefiles (or Makefile type files) are simply included in the main Makefile then
you can create matching CMake syntax files and include them into your main CMakelLists file
in a similar manner. If the different Makefiles are meant to be invoked on the command line
for different situations then you should consider creating a main CMakeLists file that uses
some logic to choose which one to include based on a CMake option.

Converting the Makefile syntax to CMake is fairly easy. Frequently Makefiles have a list of
object files to compile. These can be converted to CMake variables as follows:

OBJS= \
fool.o \
foo2.0 \
foo3.0

Converting Autoconf Based Projects 121

becomes

- set (SOURCES
fool.c
foo2.c
foo3.c

While the object files are typically listed in a Makefile, in CMake the focus is on the source
files. If you used conditional statements in your Makefiles they can be converted over to
CMake if commands. Since CMake handles generating dependencies, most dependencies or
rules to generate dependencies can be eliminated. Where you have rules to build libraries or
executables replace them with add library or add executable commands. Some UNIX
build systems (and source code) make heavy use of the system architecture to determine what
files to compile or what flags to use. Typically this information is stored in a Makefile
variable called ARCH or UNAME.

The first choice in these cases is to replace the architecture specific code with a more generic
test. For example, instead of switching your handling of byte order based on operating system,
make the decision based on the results of a byte order test such as CheckBigEndian.cmake.
With some software packages, there is too much architecture specific code for such a change
to be reasonable, or you may want to make decisions based on architecture for other reasons.
In those cases you can use the variables defined in the CMakeDetermineSystem module.
They provide fairly detailed information on the operating system and version of the host
computer.

7.5 Converting Autoconf Based Projects

Autoconf based projects primarily consist of three key pieces. The first is the configure.in file
that drives the process. The second is Makefile.in which will become the resulting Makefile
and the third piece is the remaining configured files that result from running configure. In
converting an autoconf based project to CMake you will start with the configure.in and
Makefile.in files.

The Makefile.in file can be converted to CMake syntax as explained in the preceding section
on converting UNIX Makefiles. Once this has been done you need to convert the configure.in
file into CMake syntax. Most functions (macros) in autoconf have corresponding commands
in CMake. A short table of some of the basic conversions is listed below:

AC_ARG_WITH
use the option command

122 Converting Existing Systems to CMake

AC_CHECK_HEADER
use the CHECK_INCLUDE_ FILE macro from the CheckIncludeFile module

AC_MSG_CHECKING
use the message command with the STATUS argument

AC_SUBST
done automatically when using the configure file command

AC_CHECK_LIB
use the CHECK_LIBRARY EXISTS macro from the CheckLibraryExists module

AC_CONFIG_SUBDIRS
use the add_subdirectory command

AC_OUTPUT

use the configure file command

AC_TRY_COMPILE
use the try compile command

If your configure script performs test compilations using AC_TRY COMPILE you can use the
same code for CMake. You can either put it directly into your CMakeLists file if it is short, or
preferably put it into a source code file for your project. We typically put such files into a
CMake subdirectory for large projects that require such testing.

Where you are relying on autoconf to configure files you can use CMake's configure file
command. The basic approach is the same and we typically name input files to be configured
with a . in extension just as autoconf does. This command replaces any variables in the input
file referenced as ${VAR} or @VARR with their values as determined by CMake. If a variable
is not defined, it will be replaced with nothing. Optionally, only variables of the form @vare
will be replaced and $ {VAR} will be ignored. This is useful for configuring files for languages
that use ${VAR} as a syntax for evaluating variables. You can also conditionally define
variables using the C pre processor by using #cmakedefine VAR. If the variable is defined
then configure file will convert the #cmakedefine into a #define, ifit is not defined it
will become a commented out #undef. For example:

/* what byte order is this system */
. #cmakedefine CMAKE_WORDS BIGENDIAN

/* what size is an INT */
#cmakedefine SIZEOF INT @SIZEOF“INT@

Converting Windows Based Workspaces 123

7.6 Converting Windows Based Workspaces

To convert a Visual Studio workspace (or solution for Visual Studio .Net) to CMake involves
a few steps. First you will need to create a CMakeLists file at the top of your source code
directory. This file should start with a project command that defines the name of the
project. This will become the name of the resulting workspace (or solution for Visual Studio
.Net). Next you need to add all of your source files into CMake variables. For large projects
that have multiple directories you can create a CMakeLists file in each directory as described
previously in the section on source directory structures (page 115). You will then add your
libraries and executables using add library and add executable. By default
add_executable assumes that your executable is a console application. Adding the WIN32
argument to add_executable indicates that it is a Windows application (using WinMain
instead of main).

There are a few nice features that Visual Studio supports that CMake can take advantage of.
One is support for class browsing. Typically in CMake only source files are added to a target,
not header files. If you add header files to a target, they will show up in the workspace and
then you will be able to browse them as usual. Visual Studio also supports the notion of
groups of files. By default CMake creates groups for source files and header files. Using the
source_group command you can create your own groups and assign files to them. If you
have any custom build steps in your workspace, these can be added to your CMakeLists files
using the add custom command command. Custom targets (Utility Targets) in Visual
Studio can be added with the add_custom target command.

Chapter 8

Cross Compiling with CMake

Cross compiling a piece of software means that the software is built on one system but
intended to run on a different system. The system which is used to build the software will be
called the build host, the system for which the sofiware is built will be called the target system
or target platform. The target system usually runs a different operating system (or none at all)
and/or runs on different hardware. A typical use case is software development for embedded
devices like network switches, mobile phones or engine control units. In these cases the target
platform doesn't have or is not able to run the required software development environment.

Starting with CMake 2.6.0 cross compiling is fully supported by CMake, ranging from cross
compiling from Linux to Windows, cross compiling for supercomputers through to cross
compiling for small embedded devices without an operating system (OS).

Cross compiling has several consequences for CMake;

e (CMake cannot automatically detect the target platform
e CMake cannot find libraries and headers in the default system directories
e executables built during cross compiling cannot be executed

Cross compiling support doesn't mean that all CMake-based projects can be magically cross
compiled out-of-the-box (some are), but that CMake separates between information about the
build platform and target platform and gives the user mechanisms to solve cross compiling
issues without additional requirements such as running virtual machines, etc.

126 Cross Compiling with CMake

To support cross compiling for a specific software project, CMake must to be told about the
target platform via a so called toolchain file. The CMakeLists.txt may have to be adjusted so
they are aware that the build platform may have different properties to the target platform, and
it has to deal with the cases where a compiled executable tries to execute on the build host.

8.1 Toolchain Files

In order to use CMake for cross compiling, a CMake file that describes the target platform has
to be created, called the "toolchain file". This file tells CMake everything it needs to know
about the target platform. Here is an example that uses the MinGW cross compiler for
Windows under Linux, the contents will be explained line by line afterwards:

the name of the target operating system
. set (CMAKE SYSTEM NAME Windows)

which compilers to use for C and C++
| set (CMAKE C COMPILER i586-mingw32msvc-gcc)
. set (CMAKE CXX COMPILER 1i586-mingw32msvc-g++)

where is the target environment located
| set (CMAKE_FIND ROOT_PATH /usr/i586-mingw32msvc
/home/alex/mingw-install)

| # adjust the default behavior of the FIND XXX () commands:
search programs in the host environment
. set (CMAKE FIND ROOT PATH MODE PROGRAM NEVER)

' # search headers and libraries in the target environment
set (CMAKE FIND ROOT PATH MODE LIBRARY ONLY)
- set (CMAKE_FIND ROOT_ PATH MODE INCLUDE ONLY)

Assuming that this file is saved with the name TC-mingw.cmake in your home directory, you
instruct CMake to use this file by setting the CMAKE TOOLCHAIN FILE variable:

~/src$ cd build
~/src/build$ cmake -DCMAKE TOOLCHAIN FILE=~/TC-mingw.cmake

CMAKE _TOOLCHAIN FILE has to be specified only on the initial CMake run, after that the
results are reused from the CMake cache. You don't need to write a separate toolchain file for
every piece of software you want to build. The toolchain files are per target platform, i.e. if

Toolchain Files 127

you are building several software packages for the same target platform, you only have to
write one toolchain file that can be used for all packages. What do the settings in the toolchain
file mean? We will examine them one by one. Since CMake cannot guess the target operating
system or hardware, you have to set the following CMake variables:

CMAKE_SYSTEM_NAME

This variable is mandatory; it sets the name of the target system, i.e. to the same
value as CMAKE SYSTEM NAME would have if CMake were run on the target system.
Typical examples are "Linux" and "Windows". It is used for constructing the file
names of the platform files like Linux.cmake or Windows-gcc.cmake. If your
target is an embedded system without an OS then set CMAKE SYSTEM NAME to
"Generic". Presetting CMAKE SYSTEM NAME this way instead of being detected
automatically causes CMake to consider the build a cross compiling build and the
CMake variable CMAKE CROSSCOMPILING will be set to TRUE.
CMAKE CROSSCOMPILING is the variable which should be tested in CMake files to
determine whether the current build is a cross compiled build or not.

CMAKE_SYSTEM_VERSION

This variable is optional, it sets the version of your target system. CMake does not
currently use CMAKE SYSTEM VERSTION.

CMAKE_SYSTEM_PROCESSOR

This variable is optional, it sets the processor or hardware name of the target system.
It is used in CMake for one purpose, load the

file. This file can be used to modify settings like compiler flags for the target. You
should only have to set this variable if you are using a cross compiler where each
target needs special build settings. The value can be chosen freely, so it could be e.g.
1386, or IntelPXA255, or MyControlBoardRev42.

In CMake code the CMAKE SYSTEM XXX variables always describe the target platform. The
same is true for the short WIN32, UNIX, APPLE variables. These variables can be used to test
the properties of the target. If it is necessary to test the build host system, there is a
corresponding set of variables: CMAKE HOST SYSTEM, CMAKE HOST SYSTEM NAME,
CMAKE HOST SYSTEM VERSION, CMAKE HOST SYSTEM PROCESSOR and also the short
forms CMAKE HOST WIN32, CMAKE HOST UNIX and CMAKE HOST APPLE.

Since CMake cannot guess the target system, it cannot guess which compiler it should use.
Setting the following variables defines what compilers to use for the target system.

128 Cross Compiling with CMake

CMAKE_C_COMPILER

This specifies the C compiler executable as either a full path or just the filename. If it
is specified with full path, then this path will be preferred when searching for the
C++ compiler and the other tools (binutils, linker, etc.). If the compiler is a GNU
cross compiler with a prefixed name (e.g. "arm-elf-gcc") CMake will detect this and
automatically find the corresponding C++ compiler (i.e. "arm-elf-c++"). The
compiler can also be set via the CC environment variable. Setting
CMAKE C COMPILER directly in a toolchain file has the advantage that the
information about the target system is completely contained in this file, and it does
not depend on environment variables.

CMAKE_CXX_COMPILER

This specifies the'C++ compiler executable as either a full path or just the filename.
It is handled the same way as CMAKE C COMPILER. If the toolchain is a GNU
toolchain, it should suffice to set only CMAKE C COMPILER, CMake should find the
corresponding C++ compiler automatically. As for CMAKE C COMPILER, also for
C++ the compiler can be set via the CXX environment variable.

Once the system and the compiler are determined by CMake, it will load the corresponding
files in the order described in section 11.2, The Enable Language Process.

Finding External Libraries, Programs and Other Files

Most non-trivial projects make use of external libraries or tools. CMake offers the
find program, find library, find file, find path, and find package commands
for this purpose. They search the file system in common places for these files and return the
results. find package is a bit different in that it does not actually search itself, but executes
Find<*>.cmake modules, which in turn usually call the find program, find library,
find fileand find path commands.

When cross compiling these commands become more complicated. For example, when cross
compiling to Windows on a Linux system, getting /ust/lib/libjpeg.so as the result of the
command find package (JPEG) would be useless, since this would be the JPEG library for
the host system and not the target system. In some cases you want to find files that are meant
for the target platform, in other cases you will want to find files for the build host. The
following variables are designed to give you the flexibility to change how the typical find
commands in CMake work, so that you can find both build host and target files as necessary.

The toolchain will come with its own set of libraries and headers for the target platform,
which are usually installed under a common prefix. It is also a good idea to set up a directory
where all the software that is built for the target platform will be installed, so that the software
packages don't get mixed up with the libraries that come with the toolchain.

Toolchain Files 129

The find program command is usually used to find a program which will be executed
during the build, so this should still search in the host file system, not in the environment of
the target platform. find library is normally used to find a library which is then used for
linking purposes, so this command should only search in the target environment. For
find_path and find file it is not so obvious, in many cases they are used to search for
headers, so by default they should only search in the target environment. The following
CMake variables can be set to adjust the behavior of the find commands for cross compiling.

CMAKE_FIND_ROOT_PATH

This is a list of the directories that contain the target environment. Each of the
directories listed here will be prepended to each of the search directories of every
find command. Assuming your target environment is installed under
/opt/eldk/ppc_74xx and your installation for that target platform goes to ~/install-
eldk-ppc74xx, set CMAKE FIND ROOT PATH to these two directories. Then
find library (JPEG LIB jpeg) will search in /opt/eldk/ppc 74xx/lib,
/opt/eldk/ppc_74xx/ust/lib, ~/install-eldk-ppc74xx/lib, ~/install-eldk-
ppc74xx/ust/lib, and should result in /opt/eldk/ppc_74xx/ust/lib/libjpeg.so.

By default CMAKE FIND ROOT_ PATH is empty. If set, first the directories prefixed
with the path given in CMAKE FIND ROOT PATH will be searched, and after that the
unprefixed versions of the same directories will be searched.

By setting this variable you are basically adding a new set of search prefixes to all of
the find commands in CMake, but for some find commands you may not want to
search the target or host directories. You can control how each find command
invocation works by passing in one of the three following options
NC CMAKE FIND ROOT PATH, ONLY CMAKE FIND ROOT PATH or
CMAKE FIND ROOT PATH BOTH when you call it. You can also control how the
find commands work using the following three variables.

CMAKE_FIND_ROOT_PATH_MODE_PROGRAM

This sets the default behavior for the find program command. It can be set to
NEVER, ONLY or BOTH. The default setting is BOTH. When set to NEVER,
CMAKE FIND ROOT_ PATH will not be used for £ind program calls except where it
is enabled explicitly. If set to ONLY, only the search directories with the prefixes
coming from CMAKE FIND ROOT PATH will be used by find program. The
default is BOTH, which means that first the prefixed directories, and then the
unprefixed directories, will be searched.

In most cases find program is used to search for an executable which will then be
executed, e.g. using execute process or add custom command. So in most
cases an executable from the build host is required, so setting
CMAKE_FIND ROOT PATH MODE PROGRAM to NEVER is normally preferred.

130 Cross Compiling with CMake

CMAKE_FIND ROOT_PATH_MODE_LIBRARY

This is the same as above, but for the £ind library command. In most cases this
is used to find a library which will then be used for linking, so a library for the target
is required. So in the common case it should be set to ONLY.

CMAKE_FIND_ROOT_PATH_MODE_INCLUDE

This is the same as above and used for both find path and find file. In most
cases this is used for finding include directories, so the target environment should be
searched. In the common case it should be set to ONLY. If you also need to find files
in the file system of the build host, e.g. some data files that will be processed during
the build. You may need to adjust the behavior for those find path or find_file
calls using the NO CMAKE FIND ROOT_ PATH, ONLY CMAKE FIND ROOT PATH and
CMAKE FIND ROOT PATH BOTH options.

With a toolchain file set up as described, CMake now knows how to handle the target
platform and the cross compiler. We should now able to build software for the target platform.
For complex projects there are more issues that must to be taken care of.

8.2 System Inspection

Most portable software projects have a set of system inspection tests for determining the
properties of the (target) system. The simplest way to check for a system feature with CMake
is by testing variables. For this purpose CMake provides the variables UNIX, WIN32 and
APPLE. When cross compiling, these variables apply to the target platform, for testing the
build host platform there are corresponding variables CMAKE HOST UNIX,
CMAKE HOST_ WINDOWS and CMAKE HOST APPLE.

If this granularity is too coarse, the variables CMAKE SYSTEM NAME, CMAKE SYSTEM,
CMAKE_SYSTEM VERSION and CMAKE SYSTEM PROCESSOR can be tested, along with their
counterparts CMAKE HOST SYSTEM NAME, CMAKE HOST SYSTEM,
CMAKE HOST SYSTEM VERSION and CMAKE HOST SYSTEM PROCESSOR, which contain the
same information, but for the build host and not for the target system.

S if (CMAKE SYSTEM MATCHES Windows)
i message (STATUS "Target system is Windows")
cendif ()

:if (CMAKE HOST SYSTEM MATCHES Linux)
message (STATUS "Build host runs Linux")
cendif ()

System Inspection 131

Using Compile Checks

In CMake there are macros such as CHECK INCLUDE FILES and CHECK C_SOURCE RUNS
that are used to test the properties of the platform. Most of these macros internally use either
the try compile or the try run commands. The try compile command works as
expected when cross compiling, it tries to compile the piece of code with the cross compiling
toolchain, which will give the expected result.

All tests using try run will not work since the created executables cannot normally run on
the build host. In some cases this might be possible, e.g. using virtual machines, emulation
layers like Wine or interfaces to the actual target, CMake does not depend on such
mechanisms. Depending on emulators during the build process would introduce a new set of
potential problems, they may have a different view on the file system, use other line endings,
require special hardware or software, etc.

If try run is invoked when cross compiling, it will first try to compile the software, which
will work the same way as when not cross compiling. If this succeeds, it will check the
variable CMAKE CROSSCOMPILING to determine whether the resulting executable can be
executed or not. If it cannot, it will create two cache variables, which then have to be set by
the user or via the CMake cache. Assume the command looks like this:

| try run (SHARED LIBRARY PATH TYPE
SHARED LIBRARY PATH INFO COMPILED
${PROJECT BINARY DIR}/CMakeTmp
${PROJECT_SOURCE_DIR}/CMake/SharedLibraryPathInfo.cxx
OUTPUT VARIABLE OUTPUT
ARGS "LDPATH"
)

In this example the source file SharedLibraryPathinfo.cxx will be compiled and if that
succeeds, the resulting executable should be executed. @ The variable
SHARED LIBRARY PATH INFO COMPILED will be set to the result of the build, i.e. TRUE or
FALSE. CMake will create a cache variable SHARED LIBRARY PATH TYPE and preset it to
PLEASE FILL OUT-FAILED TO RUN. This variable must be set to what the exit code of the
executable would have been if it had been executed on the target. Additionally, CMake will
create a cache variable SHARED LIBRARY PATH TYPE TRYRUN OUTPUT and preset it to
PLEASE FILL OUT-NOTFOUND. This variable should be set to the output that the executable
prints to stdout and stderr if it were executed on the target. This variable is only created if the
try run command was used with the RUN_OUTPUT VARIABLE or the OUTPUT VARIABLE
argument. You have to fill in the appropriate values for these variables. To help you with this
CMake tries its best to give you useful information. To accomplish this CMake creates a file
${CMAKE_BINARY DIR}/TryRunResults.cmake,that you can see an example of here:

132 Cross Compiling with CMake

SHARED LIBRARY PATH TYPE

C#

indicates whether the executable would have been able to run

i# on its target platform. If so, set SHARED LIBRARY PATH TYPE
to the exit code (in many cases 0 for success), otherwise

' # enter "FAILED TO RUN".

' # SHARED LIBRARY PATH TYPE TRYRUN OUTPUT

L # contains the text the executable would have printed on

L # stdout and stderr. If the executable would not have been

~# able to run, set SHARED LIBRARY PATH TYPE TRYRUN OUTPUT

empty. Otherwise check if the output is evaluated by the

L # calling CMake code. If so, check what the source file would

C# have printed when called with the given arguments.

. # The SHARED LIBRARY PATH INFO COMPILED variable holds the build
result for this TRY RUN().

#
Source file: ~/src/SharedLibraryPathInfo.cxx

| # Executable : ~/build/cmTryCompileExec-SHARED LIBRARY PATH TYPE
Run arguments: LDPATH

¥ Called from: [1] ~/src/CMakeLists.cmake

set (SHARED LIBRARY PATH TYPE
"Oll
CACHE STRING "Result from TRY RUN" FORCE)

set (SHARED LIBRARY PATH TYPE TRYRUN OUTPUT

CACHE STRING "Output from TRY RUN" FORCE)

You can find all of the variables that CMake could not determine, from which CMake file
they were called, the source file, the arguments for the executable and the path to the
executable. CMake will also copy the executables to the build directory, they have the names
cmTryCompileExec-<name of the variable>, e.g. in this case cmTryCompileExec-
SHARED LIBRARY PATH TYPE. You can then try to run this executable manually on the
actual target platform and check the results.

Once you have these results, they have to be put into the CMake cache. This can be done by
using ccmake/cmake-gui/"make edit_cache" and editing the variables directly in the cache. It
is not possible to reuse these changes in another build directory or if CMakeCache.txt is
removed.

The recommended approach is to use the TryRunResults.cmake file created by CMake.
You should copy it to a safe location (i.e. where it will not be removed if the build directory is
deleted), and give it a useful name, e.g. TryRunResults-MyProject-eldk-ppc.cmake.
The contents of this file have to be edited so that the set commands set the required variables

Running Executables Built in the Project 133

to the appropriate values for the target system. This file can then be used to preload the
CMake cache by using the -C option of cmake:

src/build/ $ cmake -C ~/TryRunResults-MyProject-eldk-ppc.cmake

You do not have to use the other CMake options again, they are now in the cache. This way
you can use MyProjectTryRunResults-eldk-ppc.cmake in multiple build trees, and it
could be distributed with your project so that it is easier for other users to cross compile it.

8.3 Running Executables Built in the Project

In some cases it is necessary that during a build an executable is invoked that was built earlier
in the same build, this is usually the case for code generators and similar tools. This does not
work when cross compiling, as the executables are built for the target platform and cannot run
on the build host (without the use of virtual machines, compatibility layers, emulators, etc.).
With CMake these programs are created using add executable, and executed with
add_custom command or add custom_target. The following three options can be used
to support these executables with CMake. The old version of the CMake code could look
something like this:

. add_executable (mygen gen.c)
:get_target_property (mygenLocation mygen LOCATION)
add_custom_command (
OUTPUT "${CMAKE CURRENT BINARY DIR}/generated.h"
COMMAND ${mygenLocation}
-o "${CMAKE CURRENT BINARY DIR}/generated.h")

Now we will show how this file can be modified so that it works when cross compiling. The
basic idea is that the executable is built only when doing a native build for the build host and
then exported as an executable target to a CMake script file. This file is then included when
cross compiling, and the executable target for the executable mygen will be loaded. An
imported target with the same name as the original target will be created. Since CMake 2.6
add custom command recognizes target names as executables, so for the command in
add custom_command simply the target name can be used, it is not necessary to use the
LOCATION property to obtain the path of the executable:

: if (CMAKE CROSSCOMPILING)
; find package (MyGen)
endif ()

. if (NOT CMAKE CROSSCOMPILING)

134 Cross Compiling with CMake

add executable (mygen gen.c)

export (TARGETS mygen FILE
, "${CMAKE BINARY DIR}/MyGenConfig.cmake")
~endif ()

- add_custom_command (
OUTPUT "${CMAKE CURRENT BINARY DIR}/generated.h"
' COMMAND mygen -o "${CMAKE CURRENT BINARY DIR}/generated.h")

With the CMakeLists.txt modified like this the project can be cross compiled. First, a native
build has to be done in order to create the necessary mygen executable. After that the cross
compiling build can begin. The build directory of the native build has to be given to the cross
compiling build as the location of the MyGen package, so that £ind package (MyGen) can
find it:

mkdir build-native; cd build-native
. cmake
make
ccd ..
mkdir build-cross; cd build-cross
. cmake -DCMAKE TOOLCHAIN FILE=MyToolchain.cmake \
: -DMyGen DIR=~/src/build-native/
make

This code works, but CMake versions prior to 2.6 will not be able to process it, as they do not
know the export command and they do not recognize the target name mygen in
add _custom command. A compatible version that works with CMake 2.4 looks like this:

if (CMAKE CROSSCOMPILING)
find package (MyGen)
endif (CMAKE CROSSCOMPILING)

if (NOT CMAKE CROSSCOMPILING)
add executable (mygen gen.c)
if (COMMAND EXPORT)
export (TARGETS mygen FILE
"$ {CMAKE BINARY DIR}/MyGenConfig.cmake")
endif (COMMAND EXPORT)
- endif (NOT CMAKE CROSSCOMPILING)

. get target property (mygenLocation mygen LOCATION)

Running Executables Built in the Project 135

- add_custom command (
OUTPUT "${CMAKE CURRENT BINARY DIR}/generated.h"
COMMAND ${mygenLocation}
-0 "${CMAKE_ CURRENT BINARY DIR}/generated.h")

In this case the target is only exported if the export command exists and the location of the
executable is retrieved using the LOCATION target property.

mkdir build-native; cd build-native
2 cmake
make
fed ..
- mkdir build-cross; cd build-cross
| cmake -DCMAKE TOOLCHAIN FILE=MyToolchain.cmake \
! -DMyGen DIR=~/src/build-native/
- make

The “old” CMake code could also be using the utility source command:

. subdirs (mygen)
- utility source (MYGEN LOCATION mygen mygen gen.c)
add custom_command (
| OUTPUT "${CMAKE CURRENT BINARY DIR}/generated.h"
COMMAND ${MYGEN_ LOCATION}
-0 "${CMAKE CURRENT BINARY DIR}/generated.h")

In this case the CMake script doesn't have to be changed, but the invocation of CMake is
more complicated, since each executable location has to be specified manually:

i mkdir build-native; cd build-native
. cmake
' make
' cd
mkdir build-cross; cd build-cross
fcmake -DCMAKE TOOLCHAIN FILE=MyToolchain.cmake

-DMYGEN_LOCATION=~/src/build-native/bin/mygen
. make

136 Cross Compiling with CMake

8.4 Cross Compiling Hello World

Now let's actually start with the cross compiling. The first step is to install a cross compiling
toolchain. If this is already installed, you can skip the next paragraph.

There are many different approaches and projects that deal with cross compiling for Linux,
ranging from free software projects working on Linux based PDAs to commercial embedded
Linux vendors. Most of these projects come with their own way to build and use the
respective toolchain. Any of these toolchains can be used with CMake, the only requirement
is that it works in the normal file system and does not expect a "sandboxed" environment, like
for example the Scratchbox project.

An easy to use toolchain with a relatively complete target environment is the Embedded
Linux Development Toolkit (http://www.denx.de/wiki/DULG/ELDK). It supports ARM,
PowerPC and MIPS as target platforms. ELDK can be downloaded from
ftp:/ftp.sunet.se/pub/Linux/distributions/eldk/. The easiest way is to download the ISOs,
mount them and then install them:

mkdir mount-iso/
. sudo mount -tiso09660 mips-2007-01-21.iso mount-iso/ -o loop
 cd mount-iso/

./install -d /home/alex/eldk-mips/

Preparing...

FHEFHFFER A S R [100%]
1l:appWeb-mips 4KCle

FHESHHFH RS AR E EEE Y [100%)

Done

ls /opt/eldk-mips/

bin eldk init etc mips 4KC mips_4KCle wusr var version

ELDK (and other toolchains) can be installed anywhere, either in the home directory or
system wide if there are more users working with them. In this example the toolchain will
now be located in /home/alex/eldk-mips/usr/bin/ and the target environment is in
/home/alex/eldk-mips/mips 4KC/.

Now that a cross compiling toolchain is installed, CMake has to be set up to use it. As already
described, this is done by creating a toolchain file for CMake. In this example the toolchain
file looks like this:

the name of the target operating system
set (CMAKE SYSTEM NAME Linux)

Cross Compiling Hello World 137

which C and C++ compiler to use
set (CMAKE C COMPILER /home/alex/eldk-mips/usr/bin/mips 4KC-gcc)
. set (CMAKE CXX COMPILER
/home/alex/eldk-mips/usr/bin/mips 4KC-g++)

location of the target environment
. set (CMAKE FIND ROOT PATH /home/alex/eldk-mips/mips_4KC
/home/alex/eldk-mips-extra-install)

L adjust the default behavior of the FIND XXX() commands:
search for headers and libraries in the target environment,
search for programs in the host environment

| set (CMAKE FIND ROOT PATH MODE PROGRAM NEVER)

:set (CMAKE FIND ROOT PATH MODE LIBRARY ONLY)
set (CMAKE FIND ROOT PATH MODE INCLUDE ONLY)

The toolchain files can be located anywhere, but it is a good idea to put them in a central
place so that they can be reused in multiple projects. We will save this file as
~/Toolchains/Toolchain-eldk-mips4K.cmake. The variables mentioned above are set
here: CMAKE SYSTEM NAME, the C/C++ compilers, CMAKE FIND ROOT PATH to specify
where libraries and headers for the target environment are located. The find modes are also set
up so that libraries and headers are searched for in the target environment only, whereas
programs are searched for in the host environment only. Now we will cross compile the hello
world project from Chapter 2:

. project (Hello)
add executable (Hello Hello.c)

Run CMake, this time telling it to use the toolchain file from above:

mkdir Hello-eldk-mips

cd Hello-eldk-mips

cmake -DCMAKE TOOLCHAIN FILE=~/Toolchains/Toolchain-eldk-
- mips4K.cmake

make VERBOSE=1

This should give you an executable that can run on the target platform. Thanks to the
VERBOSE=1 option you should see that the cross compiler is used. Now we will make the
example a bit more sophisticated by adding system inspection and install rules. We will build
and install a shared library named Tools, and then build the Hello application which links to
the Tools library.

138 Cross Compiling with CMake

- include (CheckIncludeFiles)
. check include files (stdio.h HAVE STDIO H)
. set (VERSION MAJOR 2)

. set (VERSION_MINOR 6)
i set (VERSION PATCH 0)

- configure file (config.h.in ${CMAKE BINARY DIR}/config.h)

- add library (Tools SHARED tools.cxx)

:set_target_properties (Tools PROPERTIES
VERSION ${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION7PATCH}
SOVERSION ${VERSION_MAJOR})

install (FILES tools.h DESTINATION include)
install (TARGETS Tools DESTINATION 1lib)

There is no difference to a normal CMakeLists.txt, no special prerequisites are required for
cross compiling. The CMakeLists.txt checks that the header stdio.h is available and sets the
version number for the Tools library. These are configured into config.h, which is then
used in tools.cxx. The version number is also used to set the version number of the Tools
library. The library and headers are installed to ${CMAKE INSTALL PREFIX}/1lib and
${CMAKE INSTALL PREFIX}/include respectively. Running CMake gives this result:

mkdir build-eldk-mips
i cd build-eldk-mips
cmake -DCMAKE TOOLCHAIN FILE=~/Toolchains/Toolchain-eldk-
mips4K.cmake -DCMAKE INSTALL PREFIX=~/eldk-mips-extra-install
| —— The C compiler identification is GNU
-- The CXX compiler identification is GNU
—-— Check for working C compiler: /home/alex/eldk-
mips/usr/bin/mips_ 4KC-gcc
. —— Check for working C compiler: /home/alex/eldk-
' mips/usr/bin/mips 4KC-gcc -- works
:—— Check size of void*
-- Check size of void* - done
. =- Check for working CXX compiler: /home/alex/eldk-
' mips/usr/bin/mips 4KC-g++
-- Check for working CXX compiler: /home/alex/eldk-
mips/usr/bin/mips 4KC-g++ -- works
—-- Looking for include files HAVE STDIC H
-- Looking for include files HAVE STDIO H - found
-- Configuring done

Cross Compiling Hello World 139

. -— Generating done

. —— Build files have been written to:

| /home/alex/src/tests/Tools/build-mips

émake install

éScanning dependencies of target Tools

. [100%] Building CXX object CMakeFiles/Tools.dir/tools.o

| Linking CXX shared library libTools.so

| [100%] Built target Tools

| Install the project...

. == Install configuration: ""

. —— Installing /home/alex/eldk-mips-extra-install/include/tools.h
-- Installing /home/alex/eldk-mips-extra-install/lib/libTools.so

As can be seen in the output above, CMake detected the correct compiler, found the stdio.h
header for the target platform and successfully generated the Makefiles. The make command
was invoked, which then successfully built and installed the library in the specified
installation directory. Now we can build an executable that uses the Tools library and does
some system inspection:

:project (HelloTools)
. find package (ZLIB REQUIRED)

find library (TOOLS LIBRARY Tools)
find path (TOOLS INCLUDE DIR tools.h)

if (NOT TOOLS LIBRARY OR NOT TOOLS INCLUDE DIR)
message (FATAL ERROR "Tools library not found")
endif (NOT TOOLS LIBRARY OR NOT TOOLS INCLUDE DIR)

. set (CMAKE INCLUDE CURRENT DIR TRUE)

. set (CMAKE INCLUDE DIRECTORIES PROJECT BEFORE TRUE)

- include directories ("${TOOLS INCLUDE DIR}"
"${ZLIB_ INCLUDE DIR}")

. add_executable (HelloTools main.cpp)

. target link libraries (HelloTools ${TOOLS LIBRARY}

| ${ZLIB LIBRARIES})

. set target properties (HelloTools PROPERTIES
INSTALL RPATH USE_LINK PATH TRUE)

' install (TARGETS HelloTools DESTINATION bin)

140 Cross Compiling with CMake

Building works in the same way as with the library, the toolchain file has to be used, and then
it should just work:

cmake -DCMAKE TOOLCHAIN FILE=~/Toolchains/Toolchain-eldk-
mips4K.cmake -DCMAKE INSTALL PREFIX=~/eldk-mips-extra-install
. —— The C compiler identification is GNU
* -- The CXX compiler identification is GNU
-— Check for working C compiler: /home/alex/denx-
mips/usr/bin/mips 4KC-gcc
. —— Check for working C compiler: /home/alex/denx-
- mips/usr/bin/mips 4KC-gcc -- works
-- Check size of void*
| —— Check size of void* - done
. == Check for working CXX compiler: /home/alex/denx-—
' mips/usr/bin/mips 4KC-g++
-- Check for working CXX compiler: /home/alex/denx-
mips/usr/bin/mips 4KC-g++ -- works
-- Found ZLIB: /home/alex/denx-mips/mips 4KC/usr/lib/libz.so
-- Found Tools library: /home/alex/denx-mips-extra-
install/lib/libTools.so
-- Configuring done
| -— Generating done
-- Build files have been written to:
/home/alex/src/tests/HelloTools/build-eldk-mips
make
[100%] Building CXX object CMakeFiles/HelloTools.dir/main.o
‘Linking CXX executable HelloTools
[100%] Built target HelloTools

Obviously CMake found the correct zlib and also 1ibTools.so, that had been installed in
the previous step.

8.5 Cross Compiling for a Microcontroller

CMake can be used for more than cross compiling to targets with operating systems, it is also
possible to use it in development for deeply embedded devices with small microcontrollers
and no operating system at all. As an example we will use the Small Devices C Compiler
(http://sdcc.sourceforge.net), which runs under Windows, Linux and Mac OS X, that supports
8 and 16 Bit microcontrollers. For driving the build we will use MS NMake under Windows.
As before, the first step is to write a toolchain file so that CMake knows about the target
platform. For sdcc it should look something like this:

Cross Compiling for a Microcontroller 141

set (CMAKE SYSTEM NAME Generic)
' set (CMAKE_C_COMPILER "c:/Program Files/SDCC/bin/sdcc.exe")

The system name for targets that do not have an operating system, "Generic", should be used
as the CMAKE SYSTEM NAME. The CMake platform file for "Generic" doesn't set up any
specific features. All that it assumes is that the target platform does not support shared
libraries, and so all properties will depend on the compiler and CMAKE SYSTEM PROCESSOR.
The toolchain file above does not set the FIND-related variables. As long as none of the find
commands is used in the CMake commands, this is fine. In many projects for small
microcontrollers this will be the case. The CMakeLists.txt should look like the following:

- project (Blink C)
' add library (blink blink.c)

add executable (hello main.c)
target link libraries (hello blink)

There are no major differences to other CMakeLists.txt files. One important point is that the
language "C" is enabled explicitly using the PROJECT command. If this is not done, CMake
will also try to enable support for C++, which will fail as sdcc only has support for C.
Running CMake and building the project should work as usual:

cmake -G"NMake Makefiles"
-DCMAKE TOOLCHAIN FILE=c:/Toolchains/Toolchain-sdcc.cmake
. —— The C compiler identification is SDCC
-— Check for working C compiler: c:/program
| files/sdcc/bin/sdcc.exe
-— Check for working C compiler: c:/program
files/sdcc/bin/sdcc.exe —-- works
-- Check size of void*
. —— Check size of void* - done
-- Configuring done
. —— Generating done
-- Build files have been written to: C:/src/tests/blink/build

nmake
' Microsoft (R) Program Maintenance Utility Version 7.10.3077
Copyright (C) Microsoft Corporation. All rights reserved.

Scanning dependencies of target blink
[50%] Building C object CMakeFiles/blink.dir/blink.rel

142 Cross Compiling with CMake

. Linking C static library blink.1lib

- [50%] Built target blink

© Scanning dependencies of target hello
[100%] Building C object CMakeFiles/hello.dir/main.rel
Linking C executable hello.ihx
[100%] Built target hello

This was a simple example using NMake with sdcc with the default settings of sdecc. Of
course more sophisticated project layouts are possible. For this kind of project it is also a good
idea to setup an install directory where reusable libraries can be installed, so it is easier to use
them in multiple projects. It is normally necessary to choose the correct target platform for
sdcc, not everybody uses 18051, which is the default for sdcc. The recommended way to do
this is via setting CMAKE SYSTEM PROCESSOR

This will cause CMake to search for and load the platform file P1atform/Generic-sbpcc-
C-${CMAKE_ SYSTEM PROCESSOR}.cmake. As this happens right before loading
Platform/Generic-SDCC-C.cmake, it can be used to setup the compiler and linker flags

for the specific target hardware and project. Therefore, a slightly more complex toolchain file
is required:

- get filename component (_ownDir

‘ "S{CMAKE CURRENT LIST FILE}" PATH)
. set (CMAKE MODULE PATH "${ ownDir}/Modules"

. ${CMAKE MODULE PATH})

| set (CMAKE SYSTEM NAME Generic) ;
. set (CMAKE C COMPILER "c:/Program Files/SDCC/bin/sdcc.exe™)
' set (CMAKE SYSTEM PROCESSOR "Test DS80C400 Rev 1")

. # here is the target environment located
' set (CMAKE FIND ROOT PATH "c:/Program Files/SDCC™
: "c:/ds80c400-install")

" # adjust the default behavior of the FIND XXX () commands:
search for headers and libraries in the target environment
. # search for programs in the host environment
. set (CMAKE FIND ROOT PATH MODE PROGRAM NEVER)
. set (CMAKE_FIND ROOT PATH MODE LIBRARY ONLY)
- set (CMAKE_FIND ROOT_PATH MODE INCLUDE ONLY)

This toolchain file contains a few new settings, it is also about the most complicated toolchain
file you should ever need. CMAKE SYSTEM PROCESSOR is set to Test DS80C400 Rev 1,
which is just an identifier for the specific target hardware. This has the effect that CMake will

Cross Compiling an Existing Project 143

try to load Platform/Generic-SDCC-C-Test DS80C400 Rev 1.cmake. As this file does not
exist in the CMake system module directory, the CMake variable CMAKE MODULE_PATH has
to be adjusted so that this file can be found. If this toolchain file is saved to
c:/Toolchains/sdcc-ds400.cmake, the hardware specific file should be saved in
c:/Toolchains/Modules/Platform/. An example of this is shown below:

set (CMAKE C FLAGS INIT "-mds390 --use-accelerator")
set (CMAKE EXE LINKER FLAGS INIT "")

This will select the DS80C390 as the target platform and add the --use-accelerator argument
to the default compile flags. In this example the "NMake Makefiles" generator was used. In
the same way e.g. the "MinGW Makefiles" generator could be used if GNU make from
MinGW, or another Windows version of GNU make, are available. At least version 3.78 is
required, or the "Unix Makefiles" generator under UNIX. Also any Makefile-based IDE-
project generators could be used, e.g. the Eclipse, CodeBlocks, or the KDevelop3 generator.

8.6 Cross Compiling an Existing Project

Existing CMake based projects may need some work so that they can be cross compiled, other
projects may work without any modifications. One such project is FLTK, the Fast
Lightweight Toolkit. We will compile FLTK on a Linux machine using the MinGW cross
compiler for Windows.

The first step is to install the MinGW cross compiler. For some Linux distributions there are
ready-to-use binary packages, for Debian the package name is mingw32. Once this is installed
you need to setup a toolchain file for this as described above. It should look something like
this:

' set (CMAKE_SYSTEM NAME Windows)

" # which compiler to use
. set (CMAKE _C_COMPILER 1i586-mingw32msvc-gcc)
 set (CMAKE CXX COMPILER i586-mingw32msvc-g++)

' # where are the target libraries and headers installed ?
| set (CMAKE_FIND ROOT_PATH /usr/i586-mingw32msvc
| /home/alex/mingw-install)

L # find program() should by default NEVER search the target tree
i# adjust the default behavior of the FIND XX () commands:
. # search for headers and libraries in the target environment

144 Cross Compiling with CMake

search for programs in the host environment
set (CMAKE FIND ROOT MODE PROGRAM NEVER)
set (CMAKE FIND ROOT MODE LIBRARY ONLY)
set (CMAKE FIND ROOT_MODE_INCLUDE ONLY)

Once this is working, run CMake with the appropriate options on FLTK:

.

. mkdir build-mingw

- cd build-mingw
cmake -DCMAKE TOOLCHAIN FILE=~/Toolchains/Toolchain-
mingw32.cmake -DCMAKE INSTALL PREFIX=~/mingw-install
-~ The C compiler identification is GNU
-~ The CXX compiler identification is GNU

| —— Check for working C compiler: /usr/bin/i586-mingw32msvc-gcc

. —— Check for working C compiler: /usr/bin/i586-mingw32msvc-gcc -
- works

In FLTK the utility source command is used to build the executable fluid, whose
location is put into the CMake variable FLUID COMMAND. If you intend to run this executable,
you need to preload the cache with the full path to a version of that program that can be run
on the build host.

. —— Configuring done
-- Generating done
-- Build files have been written to: /home/alex/src/fltk-1.1.x-
r5940/build-mingw

Below you can see a warning from CMake about the use of the utility source command.
To find out more CMake offers the --debug-output argument:

rm —-rf *

cmake -DCMAKE TOOLCHAIN FILE=~/Toolchains/Toolchain-
mingw32.cmake -DCMAKE INSTALL PREFIX=~/mingw-install .. --debug-
output

UTILITY SOURCE is used in cross compiling mode for
‘FLUID_COMMAND. If your intention is to run this executable, you

need to preload the cache with the full path to a version of

that program, which runs on this build machine.

Called from: [1] /home/alex/src/fltk-1.1.x-r5940/CMakelists.txt

Cross Compiling a Complex Project - VTK 145

This tells us that utility source has been called from /home/alex/src/fltk-1.1.x-
r5940/CMakeLists.txt, then CMake processed some more directories, finally it created
Makefiles in each subdirectory. Examining the top level CMakeLists.txt shows the following:

| # Set the fluid executable path
utility source (FLUID COMMAND fluid fluid fluid.cxx)
| set (FLUID COMMAND "${FLUID COMMAND}" CACHE INTERNAL "" FORCE)

Apparently FLUID COMMAND is used to hold the path for the executable fluid, which is built
by the project. Fluid is used during the build to generate code, so the cross compiled
executable will not work, instead a native fluid has to be used. In the following example the
variable FLUID COMMAND is set to the location of a fluid executable for the build host, which
is then used in the cross compiling build to generate code that will be compiled for the target
system:

- cmake . -DFLUID COMMAND=/home/alex/src/download/fltk-1.1.x-
- r5940/build-native/bin/fluid

-—- Configuring done

. —— Generating done

- make

. Scanning dependencies of target fltk zlib

[0%] Building C object

' zlib/CMakeFiles/fltk zlib.dir/adler32.obj
[0%] Building C object

- zlib/CMakeFiles/fltk zlib.dir/compress.ob]

- Scanning dependencies of target valuators
[100%] Building CXX object
test/CMakeFiles/valuators.dir/valuators.obj

. Linking CXX executable ../bin/valuators.exe
[100%] Built target valuators

That's it, the executables are now in mingw-bin/, and can be run via wine or by copying
them to a Windows system.

8.7 Cross Compiling a Complex Project - VTK

Building a complex project is a multi-step process. Complex in this case means that the
project uses tests that run executables, and that it builds executables which are used later in
the build to generate code (or something similar). One such project is VTK, the Visualization

.

146 Cross Compiling with CMake

Toolkit. It uses several try run tests and creates several code generators. When running
CMake on the project, every try run command will produce an error message and at the end
there will be a TryRunResults.cmake file in the build directory. You need to go through all
of the entries of this file and fill in the appropriate values. If you are uncertain about the
correct result, you can also try to execute the test binaries on the real target platform, they are
saved in the binary directory.

VTK contains several code generators, one of which is ProcessShader. These code generators
are added using add_executable and get_target property (LOCATION) is used to get
the locations of the resulting binaries, which are then used in add custom command or
add custom target commands. Since the cross compiled executables cannot be executed
during the build, the add executable calls are surrounded by if (NOT
CMAKE CROSSCOMPILING) commands and the executable targets are imported into the
project using the add executable command with the IMPORTED option. These import
statements are in the file VIKCompileToolsConfig.cmake, which does not have to be
created manually, but it is created by a native build of VTK.

So in order to cross compile VTK you need

e install a toolchain and create a toolchain file for CMake

e build VTK natively for the build host

e run CMake for the target platform

e complete TryRunResults.cmake

e usethe VTKCompileToolsConfig.cmake file from the native build
e finally build

So first, build a native VTK for the build host using the standard procedure.

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/VTK co VTK
cd VTK

mkdir build-native; cd build-native
ccmake

- make

Ensure that all required options are enabled using ccmake, e.g. if you need Python wrapping
for the target platform you must enable Python wrapping in build-native/. Once this build
has finished, there will be a VTKCompileToolsConfig.cmake file in build-native/. If
this succeeded, we can continue to cross compiling the project, in this example for an IBM
BlueGene supercomputer.

Some Tips and Tricks 147

cd VTK

' mkdir build-bgl-gcc
cd build-bgl-gcc

| cmake -DCMAKE_ TOOLCHAIN FILE=~/Toolchains/Toolchain-BlueGeneL-
gcc.cmake -DVTKCompileTools DIR=~/VTK/build-native/

This will finish with an error message for each try run and a TryRunResults.cmake file,
that you have to complete as described above. You should save the file to a safe location,
otherwise it will be overwritten on the next CMake run.

cp TryRunResults.cmake ../TryRunResults-VTK-BlueGeneL-gcc.cmake
. ccmake -C ../TryRunResults-VTK-BlueGenelL-gcc.cmake

make

On the second run of ccmake all the other arguments can be skipped as they are now in the
cache. It is possible to point CMake to the build directory that contains a CMakeCache.txt, so
CMake will figure out that this is the build directory.

8.8 Some Tips and Tricks

Dealing with try_run tests

In order to make cross compiling your project easier, try to avoid try run tests and use other
methods to test something instead. For examples of how this can be done consider the tests for
endianess in CMake/Modules/TestBigEndian.cmake, and the test for the compiler id
using the source file CMake/Modules/CMakeCCompilerId.c. In both try compile is
used to compile the source file into an executable, where the desired information is encoded
into a text string. Using the COPY FILE option of try compile this executable is copied to
a temporary location and then all strings are extracted from this file using file (STRINGS).
The test result is obtained using regular expressions to get the information from the string.

If you cannot avoid try run tests, try to use just the exit code from the run, not the output of
the process. That way it will not be necessary to set both the exit code and the stdout and
stderr variables for the try run test when cross compiling. This allows the
OUTPUT VARIABLE or the RUN OUTPUT VARIABLE options for try run to be omitted.

If you have done that, created and completed a correct TryRunResults.cmake file for the
target platform, you might consider adding this file to the sources of the project, so that it can
be reused by others. These files are per-target per-toolchain.

148 Cross Compiling with CMake

Target platform and toolchain issues

If your toolchain is not able to build a simple program without special arguments, like e.g. a
linker script file or a memory layout file, the tests CMake does initially will fail. To make it
work anyway, there is a CMake module, CMakeForceCompiler, that offers the following
macros:

CMAKE FORCE SYSTEM (name version processor),
CMAKE FORCE C COMPILER (compiler compiler id sizeof void p)
CMAKE FORCE CXX COMPILER (compiler compiler id).

These macros can be used in a toolchain file so that the required variables will be preset and
the CMake tests avoided.

RPATH handling under UNIX

For native builds CMake builds executables and libraries by default with RPATH. In the build
tree the RPATH is set so that the executables can be run from the build tree, i.e. the RPATH
points into the build tree. When installing the project, CMake links the executables again, this
time with the RPATH for the install tree, which is empty by default.

When cross compiling you probably want to set up RPATH handling differently, as the
executable cannot run on the build host it makes more sense to build it with the install
RPATH right from the start. There are several CMake variables and target properties for
adjusting RPATH handling.

set (CMAKE_BUILD WITH INSTALL RPATH TRUE)
set (CMAKE INSTALL RPATH "<whatever you need>")

With these two settings the targets will be built with the install RPATH instead of the build
RPATH, this avoids the need to link them again when installing. If you don't need RPATH
support in your project, you don't need to set CMAKE INSTALL RPATH, it is empty by default.

Setting CMAKE INSTALL RPATH USE LINK PATH to TRUE is useful for native builds, since
it automatically collects the RPATH from all libraries against which a targets links. For cross
compiling it should be left at the default setting, which is FALSE, because on the target the
automatically generated RPATH will be wrong in most cases, it will probably have a different
file system layout to the build host.

Chapter 9

Packaging with CPack

CPack is a powerful, easy to use, cross-platform software packaging tool distributed with
CMake since version 2.4.2. It uses the generators concept from CMake to abstract package
generation on specific platforms. It can be used with or without CMake, but it may depend on
some software being installed on the system. Using a simple configuration file, or using a
CMake module, the author of a project can package a complex project into a simple installer.
This chapter will describe how to apply CPack to a CMake project.

9.1 CPack Basics

Users of your software may not always want to, or be able to, build the software in order to
install it. The software maybe closed source, or it may take a long time to compile, or in the
case of an end user application the users may have no interest in building the application. For
these cases, what is needed is a way to build the software on one machine, and then move the
install tree to a different machine. The most basic way to do this is to use the DESTDIR
environment variable to install the software into a temporary location, then to tar or zip up
that directory and move it to the another machine. Another more powerful approach is to use
the CPack tool included in CMake.

CPack is a tool included with CMake, it can be used to create installers and packages for
projects. CPack can create two basic types of packages, source and binary. CPack works in
much the same way as CMake does for building software. It does not aim to replace native
packaging tools, rather it provides a single interface to a variety of tools. Currently CPack
supports the creation of Windows installers using NullSoft installer NSIS, Mac OS X Package
Maker tool, OS X Drag and Drop, OS X X11 Drag and Drop, Cygwin Setup packages,

150 Packaging with CPack

Debian packages, RPMs, .tar.gz, .sh (self extracting .tar.gz files), .zip compressed files. The
implementation of CPack works in a similar way to CMake. For each type of packaging tool
supported, there is a CPack generator written in C++ that is used to run the native tool and
create the package. For simple tar based packages, CPack includes a library version of tar and
does not require tar to be installed on the system. For many of the other installers, native tools
must be present for CPack to function.

" With source packages, CPack makes a copy of the source tree and creates a zip or tar file. For
binary packages, the use of CPack is tied to the install commands working correctly for a
project. When setting up install commands, the first step is to make sure the files go into the
correct directory structure with the correct permissions. The next step is to make sure the
software is relocatable and can run in an installed tree. This may require changing the
software itself, and there are many techniques to do that for different environments that go
beyond the scope of this book. Basically, executables should be able to find data or other files
using relative paths to the location of where it is installed. CPack installs the software into a
temporary directory, and copies the install tree into the format of the native packaging tool.
Once the install commands have been added to a project, enabling CPack in the simplest case
is done by including the CPack.cmake file into the project.

Simple Example

The most basic CPack project would look like this:

- project (CoolStuff)
add executable (coolstuff coolstuff.cxx)
install (TARGETS coolstuff RUNTIME DESTINATION bin)
include (CPack)

In the CoolStuff project, an executable is created and installed into the directory bin. Then the
CPack file is included by the project. At this point project CoolStuff will have CPack enabled.
To run CPack for a CoolStuff, you would first build the project as you would any other
CMake project. CPack adds several targets to the generated project. These targets in
Makefiles are package and package source, and PACKAGE in Visual Studio and Xcode. For
example, to build a source and binary package for CoolStuff using a Makefile generator you
would run the following commands:

- mkdir build
- cd build
. cmake ../CoolStuff
' make
- make package
make package source

CPack Basics 151

This would create a source zip file called CoolStuff-0.1.1-Source.zip, a NSIS installer
called CoolStuff-0.1.1-win32.exe, and a binary zip file CoolStuff-0.1.1-
win32.zip. The same thing could be done using the CPack command line.

' cd build
- cpack -C CPackConfig.cmake
. cpack -C CPackSourceConfig.cmake

What Happens When CPack.cmake Is Included?

When the include (CPack) command is executed, the CPack.cmake file is included into
the project. By default this will use the configure file command to create
CPackConfig.cmake and CPackSourceConfig.cmake in the binary-tree of the project.
These files contain a series of set commands that set variables for use when CPack is run
during the packaging step. The names of the files that are configured by the CPack.cmake
file can be customized with these two variables; CPACK OUTPUT CONFIG FILE which
defaults to CPackConfig.cmake and CPACK SOURCE OUTPUT CONFIG FILE which
defaults to CPackSourceConfig.cmake.

The source for these files can be found in the Templates/CPackConfig.cmake.in. This
file contains some comments, and a single variable that is set by CPack.cmake. The file
contains this line of CMake code:

@ CPACK OTHER VARIABLES @

If the project contains the file CPackConfig.cmake. in in the top level of the source tree,
that file will be used instead of the file in the Templates directory. If the project contains the
file CPackSourceConfig.cmake.in, then that file will be used for the creation of
CPackSourceConfig.cmake.

The configuration files created by CPack.cmake will contain all variables that begin with
“CPACK ” in the current project. This is done using the command:

get cmake property(res VARIABLES)

The above command gets all variables defined for the current CMake project. Some CMake
code then looks for all variables starting with “CPACK ”, and each variable found is
configured into the two configuration files as CMake code. For example, if you had a variable
set like this in your CMake project:

. set (CPACK_PACKAGE NAME “CoolStuff”)

152 Packaging with CPack

CPackConfig.cmake and CPackSourceConfig.cmake would have the same thing in
them:

| set (CPACK_PACKAGE NAME “CoolStuff”)

It is important to keep in mind that CPack is run after CMake on the project. CPack uses the
same parser as CMake, but will not have the same variable values as the CMake project. It
will only have the variables that start with CPACK , and these variables will be configured
into a configuration file by CMake. This can cause some errors and confusion if the values of
the variables use escape characters. Since they are getting parsed twice by the CMake
language, they will need double the level of escaping. For example, if you had the following
in your CMake project:

oK e o oot Vs
The resulting CPack files would have this:
et (CPACK_FOOBAR "Cool "Stuff"")
That would not be exactly what you would want or might expect. To get around this problem,

there are two solutions. The first is to add an additional level of escapes to the original set
command like this:

(CPACK_PACKAGE NAME “Cool \\\”Stuff\\\””)

This would result in the correct set command which would look like this:

| set (CPACK_FOOBAR "Cool \"Stuff\"")

The second solution to the escaping problem is explained in the next section.

Adding Custom CPack Options

To avoid the escaping problem a project specific CPack configure file can be specified. This
file will be loaded by CPack after CPackConfig.cmake or CPackSourceConfig.cmake is
loaded, and CPACK GENERATOR will be set to the CPack generator being run. Variables set in
this file only require one level of CMake escapes. This file can be configured or not, and
contains regular CMake code. In the example above, you could move CPACK FOOBAR into a
file MyCPackOptions.cmake.in and configure that file into the build tree of the project.
Then set the project configuration file path like this:

CPack Basics 153

i configure_file ("${PROJECT_SOURCE_DIR}/MyCPackOptions.cmake.in"
! "${PROJECT_ BINARY DIR}/MyCPackOptions.cmake"
‘ @ONLY)
set (CPACK PROJECT CONFIG FILE
"${PROJECT_ BINARY DIR}/CMakeCPackOptions.cmake")

Where MyCPackOptions.cmake.in contained
. (CPACK_FOOBAR "Cool \"Stuff\"")

The CPACK PROJECT CONFIG FILE variable should contain the full path to the CPack
config file for the project, as seen in the above example. This has the added advantage that the
CMake code can contain if statements based on the CPACK GENERATOR value, so that
packager specific values can be set for a project. For example, the CMake project sets the icon
for the installer in this file:

| set (CPACK NSTS MUT_TICON
: "@CMake SOURCE_DIR@/Utilities/Release\\CMakeLogo.ico")

Note that the path has forward slashes except for the last part which has an escaped \ as the
path separator. As of the writing of this book, NSIS needed the last part of the path to have a
Windows style slash. If you do not do this, you may get the following error:

- File: "../Release/CMakelLogo.ico" -> no files found.

. Usage: File [/nonfatall] [/al ([/r] [/x filespec [...]]
filespec [...] | /oname=outfile one file only)

Options Added by CPack

In addition to creating the two configuration files, CPack.cmake will add some advanced
options to your project. The options added depend on the environment and OS that CMake is
running on, and control the default packages that are created by CPack. These options are of
the form CPACK <CPack Generator Name>, where generator names available on each
platform can be found in the following table:

154 Packaging with CPack

Windows Cygwin Linux/UNIX Mac OS X
NSIS CYGWIN BINARY DEB PACKAGEMAKER
ZIpP SOURCE_CYGWIN RPM OSXX11
SOURCE_ZIP STGZ Drag and Drop
TBZ2
TZ
SOURCE_TGZ
SOURCE_TZ

Turning these options on or off affects the packages that are created when running CPack with
no options. If the option is off in the CMakeCache.txt file for the project, you can still build
that package type by specifying the -G option to the CPack command line.

9.2 CPack Source Packages

Source packages in CPack simply copy the entire source tree for a project into a package file,
and no install rules are used as they are in the case of binary packages. Out of source builds
should be used to avoid having extra binary stuff polluting the source package. If you have
files or directories in your source tree that are not wanted in the source package, you can use
the variable CPACK SOURCE IGNORE FILES to exclude things from the package. This
variable contains a list of regular expressions. Any file or directory that matches a regular
expression in that list will be excluded from the sources. The default setting is as follows:

"/CVS/ i /AANNANANNAN s v/ ANNANANNNANN L swp S NANANNNNN L #; /#T

There are many levels of escapes used in the default value as this variable is parsed by CMake
once and CPack again. It is important to realize that the source tree will not use any install
commands, it will simply copy the entire source tree minus the files it is told to ignore into the
package. To avoid the multiple levels of escape, the file referenced by
CPACK PROJECT CONFIG_FILE should be used to set this variable. The expression is a
regular expression and not a wild card statement, see section 4.4 for more information about
CMake regular expressions.

9.3 CPack Installer Commands

Since binary packages require CPack to interact with the install rules of the project being
packaged, this section will cover some of the options CPack provides to interact with the

CPack Installer Commands 155

install rules of a project. CPack can work with CMake’s install scripts or with external install
commands.

CPack and CMake install commands

In most CMake projects, using the cmake install rules will be sufficient to create the desired
package. By default CPack will run the install rule for the current project. However, if you
have a more complicated project, you can specify sub-projects and install directories with the
variable CPACK INSTALL CMAKE PROJECTS. This variable should hold quadruplets of
install directory, install project name, install component, and install subdirectory. For
example, if you had a project with a sub project called MySub that was compiled into a
directory called SubProject, and you wanted to install all of its components, you would have
this:

SET (CPACK_INSTALL CMAKE PROJECTS “SubProject;MySub;ALL;/”)

CPack and DESTDIR

By default CPack does not use the DESTDIR option during the installation phase. Instead it
sets the CMAKE INSTALL PREFIX to the full path of the temporary directory being used by
CPack to stage the install package. This can be changed by setting CPACK _SET DESTDIR to
on. If the DESTDIR option is on, CPack will use the project’s cache value for
CPACK_INSTALL PREFIX, and set DESTDIR to the temporary staging area. This allows
absolute paths to be installed under the temporary directory. Relative paths are installed into
DESTDIR/${project’s CMAKE INSTALL PREFIX} where DESTDIR is set to the
temporary staging area.

When doing a non-DESTDIR install for packaging, which is the default, any absolute paths are
installed into absolute directories, and not into the package. Therefore, projects that do not use
the DESTDIR option, must not use any absolute paths in install rules. Conversely, projects that
use absolute paths, must use the DESDIR option.

One other variable can be used to control the root path into which projects are installed into,
the CPACK PACKAGING INSTALL PREFIX. By default many of the generators install into the
directory /usr. That variable can be used to change that to any directory, including just /.

CPack and other installed directories

It is possible to run other install rules if the project is not CMake based. This can be done by
using the variables CPACK INSTALL COMMANDS, and CPACK INSTALLED DIRECTORIES.
CPACK INSTALL COMMANDS are commands that will be run during the installation phase of
the packaging. CPACK INSTALLED DIRECTORIES should contain pairs of directory and
subdirectory. The subdirectory can be '.' to be installed in the top-level directory of the
installation. The files in each directory will be copied to the corresponding subdirectory of the
CPack staging directory and packaged with the rest of the files.

156 Packaging with CPack

9.4 CPack for Windows Installer NSIS

To create Windows style wizard based self extracting executables, CPack uses NSIS
(NullSoft Scriptable Install System). More information about NSIS can be found at the NSIS
home page: http://nsis.sourceforge.net/ NSIS is a powerful tool with a scripting language used
to create professional Windows installers. To create Windows installers with CPack, you will
.need NSIS installed on your machine.

CPack uses configured template files to control NSIS. There are two files configured by
CPack during the creation of a NSIS installer. Both files are found in the CMake Modules
directory. Modules/NSIS.template.in is the template for the NSIS script, and
Modules/NSIS.InstallOptions.ini.in is the template for the modern user interface or
MUI used by NSIS. The install options file contains the information about the pages used in
the install wizard. This section will describe how to configure CPack to create an NSIS install
wizard.

CPack Variables Used by CMake for NSIS

This section contains screen captures from the CMake NSIS install wizard. For each part of
the installer that can be changed or controlled from CPack, the variables and values used are
given.

The first thing that a user will see of the installer in Windows is the icon for the installer
executable itself. By default the installer will have the Null Soft Installer icon, as seen in
Figure 7 for the 20071023 cmake installer. This icon can be changed by setting the variable
CPACK NSIS MUI ICON. The installer for 20071025 in the same figure shows the CMake
icon being used for the installer.

{77 cmake-2.5.20071023-win32-x86.exe 6,290 KB Application
A cmake-2,5, 2007 1025-win32-x86.exe 6,324KB Application

Figure 7 Icon for installer in Windows Explorer

The last thing a users will see of the installer in Windows is the icon for the uninstall
executable, as seen in Figure 8. This option can be set with the CPACK NSIS MUI UNIICON
variable. Both the install and uninstall icons must be the same size and format, a valid
windows .ico file usable by Windows Explorer. The icons are set like this:

~ # set the install/uninstall icon used for the installer itself
set (CPACK NSIS MUI ICON

"${CMake SOURCE DIR}/Utilities/Release\\CMakeLogo.ico")
set (CPACK NSIS MUI UNIICON

"${CMake SOURCE DIR}/Utilities/Release\\CMakeLogo.ico")

CPack for Windows Installer NSIS 157

T A E2bin File Folder
T Cdoc File Folder
[Cyman File Folder
(Cshare File Folder

A Uninstall.exe 47KB Application

Figure 8 Uninstall Icon for NSIS installer

On Windows, programs can also be removed using the Add or Remove Programs tool from
the control panel as seen in Figure 9. The icon for this should be embedded in one of the
installed executables. This can be set like this:

" # set the add/remove programs icon using an installed executable
SET (CPACK_NSIS INSTALLED ICON NAME "bin\\cmake-gui.exe")

A CMake 2.4 & cross-platform, open-source build system Size 10,02MB

Figure 9 Add or Remove Programs Entry

$ CMake 2.5 Setup a |

Weicome to the CMake 2.5 Setup
Wizard

This wizard will guide you through the installation of CMake
2.5,

It is recarnmended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue,

{ Next = ;] [Cancel]

Figure 10 First Screen of Install Wizard

When running the installer, the first screen of the wizard will look like Figure 10. In this
screen you can control the name of the project that shows up in two places on the screen. The
name used for the project is controlled by the variable

158

Packaging with CPack

CPACK_PACKAGE INSTALL DIRECTORY or CPACK NSIS PACKAGE NAME. In this example,
it was set to “CMake 2.5 like this:

set (CPACK PACKAGE INSTALL DIRECTORY "CMake
» ${CMa ke VERSTON MAJOR}. ${ CMake VERSTION MINOR}")
. # or this
set (CPACK NSIS PACKAGE NAME “CMake
R CMake_VERS ION MAJOR}. S {CMake VERSION MINOR}™)

& CMake 2.5 Setup

License Agreement

Please review the license terms before installing CMake 2.5,

Press Page Down to see the rest of the agreement.

CMake was initially developed by Kitware with the following sponsorship:

*Mational Library of Medicine at the Mational Institutes of Health
as part of the Insight Segmentation and Registration Toolkit {ITK}.

* US Mational Labs {Los alamos, Livermore, Sandia} ASC Paraliel
Visualization Initiative.

* Mational Alliance for Medical Image Computing {NAMIC) is funded by the

Mational Institutes of Health through the NIH Roadmap for Medical Research,
Grant US54 EBO05149,

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install CMake 2.5,

[< Back Jl 1 Agree][Canicel J

Figure 11 Second Screen of Install Wizard

The second page of the install wizard can be seen in Figure 11. This screen contains the
license agreement and there are several things that can be configured on this page. The banner

bitmap to the left of the “License Agreement” label is controlled by the variable
CPACK PACKAGE_ICON like this:

set (CPACK PACKAGE TICON

"${CMake SOURCE DIR}/Utilities/Release\\CMakeInstall.bmp")

CPack for Windows Installer NSIS 159

CPACK_PACKAGE INSTALL DIRECTORY is used again on this page everywhere you see the
text “CMake 2.5”. The text of the license agreement is set to the contents of the file specified
in the CPACK RESOURCE FILE LICENSE variable. CMake does the following:

set (CPACK RESOURCE FILE LICENSE
"$S{CMAKE CURRENT SOURCE DIR}/Copyright.txt")

$ CMake 2.5 Setup

install Options
Chose options for installing CMake 2.5

By default CMake 2.5 does not add its directory to the system PATH.

(53Do not add CMake to the system PATH:
) Add CMake to the system PATH for all users
" Add CMake to the system PATH for current user

[CJcreate CMake Desktop Icon

[< Back " Hext =][Cancel]

Figure 12 Third page of installer wizard

The third page of the installer can be seen in Figure 12. This page will only show up if
CPACK_NSIS MODIFY PATH is set to on. If you check the Create “name” Desktop Icon
button, and you put executable names in the variable CPACK_CREATE DESKTOP_ LINKS, then
a desktop icon for those executables will be created. For example, to create a desktop icon for
the cmake-gui program of CMake, the following is done:

set (CPACK CREATE DESKTOP LINKS cmake-gui)

Multiple desktop links can be created if your application contains more than one executable.
The link will be created to the Start Menu entry, so CPACK PACKAGE EXECUTABLES,
which is described later in this section, must also contain the application in order for a desktop
link to be created.

160 Packaging with CPack

§ CMake 2.5 Setup

Choose Install Location
Choose the folder in which to install CMake 2.5.

Setup will install CMake 2.5 in the following folder. To install in a different folder, dick Browse
and select another folder. Click Next to continue.

Destination Folder
“VProgram Fies\CMake 2. S 1 I Browse... '

Space required: 29.3MB
Space available: 2.3GB

e i A e SRR TR e S D e e T

[<§ad<jl_ Next >][Cancel]

Figure 13 Fourth page of installer wizard

The fourth page of the installer seen in Figure 13 uses the variable
CPACK_PACKAGE INSTALL DIRECTORY to specify the default destination folder in Program
Files. The following cmake code was used to set that default:

set (CPACK_PACKAGE INSTALL DIRECTORY "CMake
${CMake VERSION MAJOR}.${CMake VERSION MINOR}")

The remaining pages of the installer wizard do not use any additional CPack variables, and
are not included in this section. Another important option that can be set by the NSIS CPack
generator is the registry key used. There are several CPack variables that control the default
key used. The key is defined in the NSIS.template.in file as follows:

Software\@CPACK PACKAGE VENDOR@\Q@CPACK PACKAGE INSTALL REGISTRY KEY(@

Where CPACK_PACKAGE VENDOR defaults to Humanity, and
CPACK_PACKAGE INSTALL REGISTRY KEY defaults to "${CPACK_PACKAGE_NAME}
${CPACK PACKAGE_VERSION}"

So for CMake 2.5.20071025 the registry key would look like this:

CPack for Windows Installer NSIS 161

| HKEY LOCAL_MACHINE\SOFTWARE\Kitware\CMake 2.5.20071025

Creating Windows Short Cuts in the Start Menu

There are two variables that control the short cuts that are created in the Windows Start menu
by NSIS. The variables contain lists of pairs, and must have an even number of elements to
work correctly. The first is CPACK_PACKAGE EXECUTABLES, it should contain the name of
the executable followed by the name of the short cut. For example in the case of CMake, the
executable is called cmake-gui, but the shortcut is named “CMake”. CMake does the
following to create that short cut:

%set (CPACK_PACKAGE EXECUTABLES "cmake-gui" "CMake")

The second is CPACK NSIS MENU LINKS. This variable contains arbitrary links into the
install tree, or to external web pages. The first of the pair is always the existing source file or
location, and the second is the name that will show up in the Start menu. To add a link to the
help file for cmake-gui and a link to the CMake web page the following add the following:

| set (CPACK NSIS MENU LINKS
: "doc/cmake-$ {VERSION MAJOR}.${VERSION MINOR}/cmake-gui.html"
"cmake-gui Help" "http://www.cmake.org" "CMake Web Site")

Advanced NSIS CPack Options

In addition to the variables already discussed, CPack provides a few variables that are directly
configured into the NSIS script file. These can be used to add NSIS script fragments to the
final NSIS script used to create the installer. They are as follows:

CPACK_NSIS_EXTRA_INSTALL_COMMANDS

Extra commands used during install.

CPACK_NSIS_EXTRA_UNINSTALL_COMMANDS
Extra commands used during uninstall.

CPACK NSIS CREATE_ICONS_EXTRA
Extra NSIS commands in the icon section of the script.

CPACK NSIS DELETE_ICONS_EXTRA
Extra NSIS commands in the delete icons section of the script.

162 Packaging with CPack

When using these variables the NSIS documentation should be referenced, and the author
should look at the NSTS. template.in file for the exact placement of the variables.

Setting File Extension Associations With NSIS

One example of a useful thing to do with the extra install commands is to create associations
from file extensions to the installed application. For example, if you had an application
CoolStuff that could open files with the extension .cool, you would set the following extra
install and uninstall commands:

set (CPACK NSIS EXTRA INSTALL COMMANDS "

WriteRegStr HKCR '.cool' '' 'CoolFile'
WriteRegStr HKCR 'CoolFile' '' 'Cool Stuff File'
WriteRegStr HKCR 'CoolFile\\shell' '' 'open'

WriteRegStr HKCR 'CoolFilel\\DefaultIcon' \\

"' 'SINSTDIR\\bin\\coolstuff.exe,0'
WriteRegStr HKCR 'CoolFile\\shell\\open\\command' \\

"' 'SINSTDIR\\bin\\coolstuff.exe \"%1\"'
WriteRegStr HKCR \"CoolFile\\shell\\edit' \\

''" 'Edit Cool File'
WriteRegStr HKCR 'CoolFilel\shell\\edit\\command' \\

"' 'SINSTDIR\\bin\\coolstuff.exe \"$I1\"'
System: :Call \\

'Shell32::SHChangeNotify (i 0x8000000, i 0, i 0, i 0)'

")

set (CPACK NSIS EXTRA UNINSTALL COMMANDS "
DeleteRegKey HKCR '.cool'
DeleteRegKey HKCR 'CoolFile'
")

This creates a Windows file association to all files ending in .cool, so that when a user
double clicks on a .cool file coolstuff.exe is run with the full path to the file as an
argument. This also sets up an association for editing the file from the windows right click
menu to the same coolstuff.exe program. The Windows explorer icon for the file is set to
the icon found in the coolstuff.exe executable. When it is uninstalled, the registry keys
are removed. Since the double quotes and Windows path separators must be escaped, it is best
put this code into the CPACK_PROJECT CONFIG_FILE for the project.

- configure file(
${Coolstuff SOURCE DIR}/CoolStuffCPackOptions.cmake.in
${CoolStuff BINARY DIR}/CoolStuffCPackOptions.cmake @ONLY)

CPack for Windows Installer NSIS 163

. set (CPACK PROJECT CONFIG FILE
${Coolstuff BINARY DIR}/CoolStuffCPackOptions.cmake)
- include (CPack)

Installing Microsoft Run Time Libraries

Although not strictly an NSIS CPack command, if you are creating applications on Windows
with the Microsoft compiler, you will most likely want to distribute the run time libraries
from Microsoft alongside your project. In CMake, all you need to do is the following:

" include (InstallRequiredSystemLibraries)

This will add the compiler run time libraries as install files that will go into the bin directory
of your application. If you do not want the libraries to go into the bin directory, you would do
this:

- set CMAKE_ INSTALL SYSTEM RUNTIME LIBS SKIP TRUE)
include InstallRequiredSystemLibraries)

- install PROGRAMS ${CMAKE INSTALL SYSTEM RUNTIME LIBS}

| DESTINATION mydir)

It is important to note that the run time libraries must be right next to the executables of your
package in order for Windows to find them. As of Visual Studio 2005, side by side manifest
files are also required to be installed with your application when distributing the run time
libraries. If you want to package a debug version of your software you will need to set
CMAKE INSTALL DEBUG LIBRARIES to ON prior to the include.

CPack Component Install Support

By default, CPack's installers consider all of the files installed by a project as a single,
monolithic unit: either the whole set of files is installed, or none of the files are installed.
However, with many projects it makes sense for the installation to be subdivided into distinct,
user-selectable components: some users may want to install only the comand-line tools for a
project, while other users might want the GUI or the header files.

This section describes how to configure CPack to generate component-based installers that
allow users to select the set of project components that they wish to install. As an example a
simple installer will be created for a library that has three components: a library binary, a
sample application, and a C++ header file. When finished the resulting installers for Windows
and Mac OS X look like the ones in Figure 14.

164 Packaging with CPack

i
Custom Install on “OSLimage” Choose Components
i Choase which features of CPack Component Example you want
toinstall,

= Development

Libraries
B s Chedk the you wanit tonstal and you dont wank to
instal Click Installto start the instakation.
MyLib Agplication i Selectthatwpeckidtal cumo
i + - Desription
r, sélect the optional 1
i | Staticlibraries used to
m{’m it (B vibraries 1 bulid programs with
i H 4+ He addir s IR T L oY
i + i (2 Runtime +
seacegauied: 240 %8 Remaining: 107 ¥ { ;
§ b L | |
EJC<~ header fles for use with MyLib e ol B
- e
{Gotack t { Timstall 3 <back J{_tetal] [concel

Figure 14 Mac and Windows Component Installers

The simple example we will be working with is as follows, it has a library and an executable.
CPack commands that have already been covered are used.

cmake minimum required(VERSION 2.6.0 FATAL ERROR)
. project (MyLib)

. add_library(mylib mylib.cpp)

. add_executable (mylibapp mylibapp.cpp)
| target link libraries (mylibapp mylib)

- install (TARGETS mylib ARCHIVE DESTINATION lib)
install (TARGETS mylibapp RUNTIME DESTINATION bin)
;install(FILES mylib.h DESTINATION include)
add CPack to project
. set (CPACK PACKAGE NAME "MyLib")
1Set(CPACK_PACKAGE¥VENDOR "CMake.org")
| set (CPACK_PACKAGE DESCRIPTION SUMMARY "MyLib - CPack Component
fInstallation Example™)
| set (CPACK PACKAGE VERSTON "1.0.0")
| set (CPACK_PACKAGE VERSION MAJOR "1")
set (CPACK PACKAGE VERSION MINCR "O")
: set (CPACK PACKAGE VERSION PATCH "O")
set (CPACK_PACKAGE INSTALL DIRECTORY "CPack Component Example")

;# This must always be last!
include (CPack)

CPack for Windows Installer NSIS 165

Specifing Components

The first step in building a component-based installation is to identify the set of installable
components. In this example, three components will be created: the library binary, the
application, and the header file. This decision is arbitrary and project-specific, but be sure to
identify the components that correspond to units of functionality important to your user, rather
than basing the components on the internal structure of your program.

For each of these components, we need to identify which component each of the installed files
belong in. For each INSTALL command in CMakeLists.txt, add an appropriate COMPONENT
argument stating which component the installed files will be associated with:

install (TARGETS mylib
ARCHIVE
DESTINATION lib
COMPONENT libraries)
install (TARGETS mylibapp
RUNTIME
DESTINATION bin
COMPONENT applications)
install (FILES mylib.h
DESTINATION include
COMPONENT headers)

Note that the COMPONENT argument to the INSTALL command is not new; it has been a part of
CMake's INSTALL command to allow installation of only part of a project. If you are using
any of the older installation commands (INSTALL TARGETS, INSTALL FILES , etc.), you
will need to convert them to INSTALL commands in order to use components.

The next step is to notify CPack of the names of all of the components in your project by
calling the cpack add component function for each component of the package:

cpack add component (applications)
cpack add component (libraries)
- cpack add_component (headers)

At this point, you can build a component-based installer with CPack that will allow one to
independently install the applications, libraries, and headers of MyLib. The Windows and
Mac OS X installers will look like the ones shown in Figure 15.

166 Packaging with CPack

 CPack Component Example Setup

Choose Components Custom Instali on “OSL muge

Choose which Features of CPack Component Example you want o, | Pazkage Name adion Sz

toinstal. i e . © introduction %, = abplicd L el A {

£ = & fanii e ﬂ% i WZ headers instali 4.0 KB
Check the components youwant to.install and uncheck the components you-don't want to e ™ fibraries instal 4.0 KB
instal: Click Install to start the installation. @ License & A

© Destination Seléct

Select components ko install:).M Ty @ Insn"qﬁnn'ﬁpe i
| M headers ! !
|] libraries \

ired: 28.0 KB Remaining: 102 GB

Bpace required: 33:0KB

S

<pack | Instal j Cancel { Standard Install } (GoBack 1 { nstalfl

Figure 15 Windows and Mac OS X Component Installer First Page

Naming Components

At this point, you may have noted that the names of the actual components in the installer are
not very descriptive: they just say "applications”, "libraries", or "headers", as specified in the
component names. These names can be improved by using the DISPLAY NAME option in
the cpack _add component function:

- cpack add component (applications DISPLAY NAME

- "MyLib Application")

. cpack add component (libraries DISPLAY NAME "Libraries™)
cpack_add component (headers DISPLAY NAME "C++ Headers")

Any macro prefixed with CPACK_COMPONENT S {COMPNAME }, where ${COMPNAME} is the
uppercase name of a component, is used to set a particular property of that component in the
installer. Here, we set the DISPLAY NAME property of each of our components, so that we get
human-readable names. These names will be listed in the selection box rather than the internal
component names "applications", "libraries", "headers".

CPack for Windows Installer NSIS 167

“emponent Example Setup

Choose Components

Choose which features of CPack Component Example you want
toinstal.

Check the yauwant toinstalland unicheck the: you don't wank ko
instal, Click Install to start the mstallation.

Select components to instell:

|] C++ Headers
;] Libraries

Space required: 33.0KB

S

[<Back J[mmstel | [camcel]

Figure 16 Windows and Mac OS X Installers with named components

Adding Component Descriptions

There are several other properties associated with components, including the ability to make a
component hidden, required, or disabled by default, to provide additional descriptive
information. Of particular note is the DESCRIPTION property, which provides some
descriptive text for the component. This descriptive text will show up in a separate
"description" box in the installer, and will be updated either when the user's mouse hovers
over the name of the corresponding component (Windows) or when the user clicks on a
component (Mac OS X). We will add a description for each of our components below:

cpack_add component (applications DISPLAY NAME "MyLib
Application"
DESCRIPTION
"An extremely useful application that makes use of MyLib"
)
cpack add component (libraries DISPLAY NAME "Libraries”
DESCRIPTION
"Static libraries used to build programs with MyLib"
)
:cpackfaddﬁcomponent(headers DISPLAY NAME "C++ Headers"
 DESCRIPTION "C/C++ header files for use with MyLib"
)

Generally, descriptions should provide enough information for the user to make a decision on
whether to install the component, but should not themselves be more than a few lines long
(the "Description” box in the installers tends to be small). Figure 17 shows the description
display for both the Windows and Mac OS X installers.

168 Packaging with CPack

& cpack Component Example Sefup

kiR
Choose Components

Choose which features of CPack Component Example you want
toinstall.

Custom install on

Check the you want to install the you don't want to
instal. Click Install to start the installation.
Description
Select nents to install;
compo An extremely useful
application that makes
use of My
. g g e
Space’ iired: 268.0 K& Remaining. 102 GB
‘Space required: 33.0KB \ # An extremely useful appication that makes use of Mylib
Lot R [cond | ™ (Suandard nstall_) (GoBack) (instal

Figure 17 Component Installers with descriptions

Component Interdependecies

With most projects, the various components are not completely independent. For example, an
application component may depend on the shared libraries in another component to execute
properly, such that installing the application component without the corresponding shared
libraries would result in an unusable installation. CPack allows you to express the
dependencies between components, so that a component will only be installed if all of the
other components it depends on are also installed.

To illustrate component dependencies, we will place a simple restriction on our component-
based installer. Since we do not provide source code in our installer, the C++ header files we
distribute can only actually be used if the user also installs the library binary to link their
program against. Thus, the "headers" component depends on the availability of the "libraries"
component. We can express this notion by setting the DEPENDS property for the HEADERS
component as such:

cpack_add component (headers DISPLAY NAME "C++ Headers"
DESCRIPTION
"C/C++ header files for use with MyLib"
DEPENDS libraries
)

The DEPENDS property for a component is actually a list, as such a component can depend on
several other components. By expressing all of the component dependencies in this manner,
you can ensure that users will not be able to select an incomplete set of components at
installation time.

Grouping Components

When the number of components in your project grows large, you may need to provide
additional organization for the list of components. To help with this organization, CPack

CPack for Windows Installer NSIS 169

includes the notion of component groups. A component group is, simply, a way to provide a
name for a group of related components. Within the user interface, a component group has its
own name, and underneath that group are the names of all of the components in that group.
Users will have the option to (de-)select the installation of all components in the group with a
single click, or expand the group to select individual components.

We will expand our example by categorizing its three components, "applications", "libraries",
and "headers", into "Runtime" and "Development" groups. We can place a component into a
group by using the GROUP option to the cpack add component function as follows:

cpack add component (applications
DISPLAY NAME "MyLib Application"
DESCRIPTION
"An extremely useful application that makes use of MyLib"
| GROUP Runtime)
' cpack add component (libraries
DISPLAY NAME "Libraries"
DESCRIPTION
"Static libraries used to build programs with MyLib"
GROUP Development)
cpack_add component (headers
| DISPLAY NAME "C++ Headers"
DESCRIPTION "C/C++ header files for use with MyLib"
GROUP Development
DEPENDS libraries
)

Like components, component groups have various properties that can be customized,
including the DISPLAY NAME and DESCRIPTION. For example, the following code adds an
expanded description to the "Development" group:

cpack _add component group (Development

EXPANDED

DESCRIPTION

"All of the tools you'll ever need to develop software")

Once you have customized the component groups to your liking, rebuild the binary installer to
see the new organization: the MyLib application will show up under the new "Runtime"
group, while the MyLib library and C++ header will show up under the new "Development”
group. One can easily turn on/off all of the components within a group using the installer’s
GUL This can be seen in Figure 18.

170 Packaging with CPack

8 CPack Component Fxample Setup

Choose Components
Choose which features of CPack Component Example you want Action
to nstall avetdoment - L
e S e iy i W Libraries Instalf 4.0 KB i
Check the comparients you want to install and h you don't warit to & C+ + Headers Instali 4.0KB. |
instal. Cick Install to start the installation. » Runtime 20.0 K8
MyLib Application Instals 200K8 |
? e \ Description
Select components toinstali | {
1T | Allof the tools you'l
| everneed to develop
C++Headers | software
¢ i [Runtime |
! 1 (& MyLib Application | i
| | Space Required: 28.0 KB Rematning: 102 C8
Space requited: 33,068 i { 4 Ail of the tools you'll ever need 1o develop software
1% B
i N
[<mac J{_mstal] [concel] { Standard install (Gosack) (sl)

Figure 18 Component Grouping

Installation Types (NSIS Only)

When a project contains a large number of components, it is common for a Windows installer
to provide pre-selected sets of components based on specific user needs. For example, a user
wanting to develop software against a library will want one set of components, while an end
user might use an entirely different set. CPack supports this notion of pre-selected component
sets via installation types. An installation type is, simply, a set of components. When the user
selects an installation type, exactly that set of components is selected---then the user is
permitted to further customize their installation as desired. Currently this is only supported by
the Windows NSIS generator.

For our simple example, we will create two installation types: a "Full" installation type that
contains all of the components, and a "Developer” installation type that includes only the
libraries and headers. To do this, we use the function cpack _add install type to add the

types.

- cpack add install type(Full DISPLAY NAME "Everything")
‘cpack“add_install_type(Developer)

Next, we set the INSTALL TYPES property of each component to state which installation
types will include that component. This is done with the INSTALL TYPES option to the
cpack add component function.

cpack_add_component (libraries DISPLAY NAME "Libraries"
DESCRIPTION
"Static libraries used to build programs with MyLib"
GROUP Development
INSTALL TYPES Developer Full)
cpack add component (applications

CPack for Windows Installer NSIS 171

DISPLAY NAME "MyLib Application"
DESCRIPTION
"An extremely useful application that makes use of MyLib"
GROUP Runtime
| INSTALL TYPES Full)

cpack add component (headers
DISPLAY NAME "C++ Headers"
DESCRIPTION "C/C++ header files for use with MyLib"
GROUP Development
DEPENDS libraries
INSTALL TYPES Developer Full)

Components can be in any number of installation types. If you rebuild the Windows installer,
the components page will contain a combo box that allows you to select the installation type,
and therefore its corresponding set of components as shown in Figure 19.

$ CPack Component Example Setup

Choose Components

Choose which features of CPack Component Example you want
to install.

Check the components you want to install and uncheck the components you don't want to
install. Click Install to start the installation.

Select the type of install: {r&;;:o;n |
o T
2 Description
Or, select the optional = B3 Development
i atic i i ks
: CESEE | wib

& [#] Runtime

Space required: 32.0KB

[<Bacrlg Install J [Cancel]

Figure 19 NSIS Installation Types

Variables that control CPack components

The functions cpack add install type, cpack add component group, and
cpack add component just set CPACK_ variables. Those variables are described in the

following list:

CPACK_COMPONENTS_ALL

This is a list containing the names of all components that should be installed by
CPack. The presence of this macro indicates that CPack should build a component-

172 Packaging with CPack

based installer. Files associated with any components not listed here or any
installation commands not associated with any component will not be installed.

CPACK_COMPONENT_${COMPNAME} DISPLAY_NAME

The displayed name of the component $ {COMPNAME}, used in graphical installers
to display the component name. This value can be any string.

CPACK_COMPONENT_${COMPNAME} DESCRIPTION

An extended description of the component ${COMPNAME}, used in graphical
installers to give the user additional information about the component. Descriptions
can span multiple lines using "\n" as the line separator.

CPACK_COMPONENT_${COMPNAME}_HIDDEN

Flag that indicates that this component will be hidden in the graphical installer, and
therefore cannot be selected or installed. Only available with NSIS.

CPACK_COMPONENT_${COMPNAME} REQUIRED

Flag that indicates that this component is required, and therefore will always be
installed. It will be visible in the graphical installer, but it cannot be unselected.

CPACK_COMPONENT_${COMPNAME}_ DISABLED

Flag that indicates that this component should be disabled (unselected) by default.
The user is free to select this component for installation.

CPACK_COMPONENT_${COMPNAME}_DEPENDS

Lists the components on which this component depends. If this component is
selected, then each of the components listed must also be selected.

CPACK_COMPONENT_${COMPNAME} GROUP

Names the component group of which this component is a part. If not provided, the
component will be a standalone component, not part of any component group.

CPACK_COMPONENT_${COMPNAME}_INSTALL_TYPES

Lists the installation types of which this component is a part. When one of these
installations types is selected, this component will automatically be selected. Only
available with NSIS.

CPACK_COMPONENT_GROUP_${GROUPNAME} DISPLAY NAME

The displayed name of the component group ${GROUPNAME}, used in graphical
installers to display the component group name. This value can be any string.

CPack for Cygwin Setup 173

CPACK_COMPONENT_GROUP_${GROUPNAME} DESCRIPTION

An extended description of the component group ${GROUPNAME}, used in
graphical installers to give the user additional information about the components
contained within this group. Descriptions can span multiple lines using "\n" as the
line separator.

CPACK_COMPONENT_GROUP_${GROUPNAME} BOLD_TITLE
Flag indicating whether the group title should be in bold. Only available with NSIS.

CPACK_COMPONENT_GROUP_${GROUPNAME} EXPANDED

Flag indicating whether the group should start out "expanded", showing its
components. Otherwise only the group name itself will be shown until the user clicks
on the group. Only available with NSIS.

CPACK_INSTALL_TYPE_S${INSTNAME} DISPLAY_NAME
The displayed name of the installation type. This value can be any string.

9.5 CPack for Cygwin Setup

Cygwin (http://www.cygwin.com/) is a Linux-like environment for Windows that consists of
a run time DLL and a collection of tools. To add tools to the official cygwin the cygwin setup
program is used. The setup tool has very specific layouts for the source and binary trees that
are to be included. CPack can create the source and binary tar files correctly bzip’ed that can
be uploaded to the cygwin mirror sites. You must of course have your package accepted by
the cygwin community before that is done. Since the layout of the package is more restrictive
than other packaging tools, you may have to change some of the install options for your
project.

The cygwin setup program requires that all files be installed into /usr/bin,
/usr/share/project-version, /usr/share/man and /usr/share/doc/package-
version. The cygwin CPack generator will automatically add the /usr to the install
directory for the project. The project must install things into /share and /bin, and CPack
will add the /usr prefix automatically.

Cygwin also requires that you provide a shell script that can be used to create the package
from the sources. Any cygwin specific patches that are required for the package must also be
provided in a diff file. CMake’s configure file command can be used to create both of these
files for a project. Since CMake is a cygwin package, the CMake code used to configure
CMake for the cygwin CPack generators is as follows:

174 Packaging with CPack

' set (CPACK PACKAGE NAME cmake)
f# setup the name of the package for cygwin cmake-2.4.3

set (CPACK PACKAGE FILE NAME
"${CPACK PACKAGE NAME}-2.2.${CPACK PACKAGE VERSION PATCH}")

.~ #, the source has the same name as the binary
set (CPACK SOURCE PACKAGE FILE NAME ${CPACK PACKAGE FILE NAME})

Create a cygwin version number in case there are changes
for cygwin that are not reflected upstream in CMake
set (CPACK CYGWIN PATCH NUMBER 1)

1f we are on cygwin and have cpack, then force the

- # doc, data and man dirs to conform to cygwin style directories
set (CMAKE DOC_DIR "/share/doc/${CPACK PACKAGE FILE NAME}")

. set (CMAKE DATA DIR "/share/${CPACK PACKAGE FILE NAME}")

set (CMAKE MAN DIR "/share/man")

. # These files are required by the cmCPackCygwinSourceGenerator and
the files put into the release tar files.
- set (CPACK CYGWIN BUILD SCRIPT

"${CMake BINARY DIR}/@CPACK PACKAGE FILE NAME@-

@CPACK CYGWIN PATCH NUMBER@.sh")

set (CPACK CYGWIN PATCH FILE

"S{CMake BINARY DIR}/GCPACK PACKAGE FILE NAMEQ@-

@CPACK CYGWIN PATCH NUMBER@.patch")

include the sub directory for cygwin releases
- include (Utilities/Release/Cygwin/CMakelists.txt)

1# when packaging source make sure to exclude the .build directory
. set (CPACK SOURCE IGNORE FILES
"/CVS/" "/\\\\.build/" "/\\\\.SVH/" "\\\\.swp$" n\\\\.#u "/#n n~$n)

Utilities/Release/Cygwin/CMakelists.txt

create the setup.hint file for cygwin

configure file (
"${CMake SOURCE DIR}/Utilities/Release/Cygwin/cygwin-setup.hint.in"
"${CMake BINARY DIR}/setup.hint")

configure file (

CPack for Cygwin Setup 175

"${CMake SOURCE DIR}/Utilities/Release/Cygwin/README.cygwin.in"
"${CMake BINARY DIR}/Docs/@CPACK PACKAGE FILE NAME@-
@CPACK_CYGWIN PATCH NUMBER@.README")

{ install files (/share/doc/Cygwin FILES
${CMake_BINARY_DIR}/DOCS/@CPACK_PACKAGE_FILE_NAME@—
@CPACK CYGWIN PATCH NUMBERQ.README)

create the shell script that can build the project
3configure~file (

' "${CMake SOURCE DIR}/Utilities/Release/Cygwin/cygwin-package.sh.in"
S{CPACK CYGWIN BUILD SCRIPT})

" # Create the patch required for cygwin for the project

configure file (

- "${CMake SOURCE DIR}/Utilities/Release/Cygwin/cygwin-patch.diff.in"
${CPACK_CYGWIN PATCH FILE})

The file Utilities/Release/Cygwin/cygwin-package.sh.in, can be found in the
CMake source tree. It is a shell script that can be used to re-create the cygwin package from
source. For other projects, there is a template install script that can be found in
Templates/cygwin-package.sh.in. This script should be able to configure and package
any cygwin based CPack project, and it is required for all official cygwin packages.

Another important file for cygwin binaries is share/doc/Cygwin/project-
version.README. This file should contain the information required by cygwin about the
project. In the case of CMake, the file is configured so that it can contain the correct version
information. For example part of that file for CMake looks like this:

Build instructions:
unpack cmake-2.5.20071029-1-src.tar.bz2
if you use setup to install this src package, it will be
unpacked under /usr/src automatically
cd /usr/src
./cmake-2.5.20071029-1.sh all
This will create:
/usr/src/cmake-2.5.20071029.tar.bz2
/usr/src/cmake-2.5.20071029-1-src.tar.bz2

176 Packaging with CPack

9.6 CPack for Mac OS X PackageMaker

On the Apple Mac OS X operating system, CPack provides the ability to use the system
Package Maker tool. This section will show the CMake application install screens users will
see when installing the CMake package on OS X. The CPack variables set to change the text
in the installer will be given for each screen of the installer.

. tmake-2,4.7-Darwin-universal

cmake-2.4.7-Darwin-
universal.pkg

Figure 20 Mac Package inside .dmg

In Figure 20, the .pkg file found inside the .dmg disk image created by the CPack package
maker for Mac OS X is seen. The name of this file is controlled by the
CPACK_PACKAGE FILE NAME variable. If this is not set CPack will use a default name based
on the package name and version settings.

806 % Install CMake R 1

Welcome to the CMake Installer

Welcome o instailation. This program will guide you through the

@ Introduction instaltation of this software.

Figure 21 Introduction Screen Mac PackageMaker

CPack for Mac OS X PackageMaker 177

When the .pkg file is run, the package wizard starts with the screen seen in Figure 21. The
text in this window is controlled by the file pointed to by the
CPACK RESOURCE FILE WELCOME variable.

r@ 6 @ Install CMake

Iimportant information

DESCRIPTION

 Introduction ¥
@ Read Me

This is an installer created using CPack (hitpZwww .cmake.org). No
additional installation instructions provided.

|

.

print...) Save..] { GoBack) { Continue)

#
.

Figure 22 Readme section of Mac package wizard

Figure 22 shows the read me section of the package wizard. The text for this window is
customized by using the CPACK_RESOURCE_FILE README variable. It should contain a path
to the file containing the text that should be displayed on this screen.

178 Packaging with CPack

e o o @ Install CMake

Software License Agreement

"English

@ Introduction
Read Me

CMake was initially developed by Kitware with the following

sponsorship:

6 License

* National Library of Medicine at the National institutes of Health
as part of the Insight Segmentation and Registration Toolkit {ITK).

& Select Destin

* US National Labs (Los Alamos, Livermore, Sandia) ASC Parallel
Visualization Initiative.

1 National Alliance for Medical image Computing (NAMIC) is funded
by the

National Institutes of Health through the NI Roadmap for Medical
Research,

Grant US54 EBOO5149.

* Kitware, Inc.

The CMake copyright is as follows:

.
&

Copyright {c) 2002 Kitware, Inc., Insight Consortium Iy

{ print.) (Save..) { GoBack } (Continue)

% |

Figure 23 License screen Mac packager

Figure 23 contains the license text for the package. Users must accept the license for the
installation process to continue. The text for the license comes from the file pointed to by the
CPACK_RESOURCE FILE LICENSE variable.

The other screens in the installation process are not customizable from CPack. To change
more advanced features of this installer there are two template CPack template files that you
can modify, Modules/CPack.Info.plist.in and
Modules/CPack.Description.plist.in. These files can be replaced by using the
CMAKE MODULE PATH variable to point to a directory in your project containing a modified
copy of CPackInfo.plist.in.

9.7 CPack for Mac OS X Drag and Drop

CPack also support the creation of a Drag and Drop installer for the Mac. In this case a .dmg
disk image is created. Inside the image, it contains a symbolic link to the /Applications
directory and a copy of the install tree. In this case it is best to use a Ma