
acmqueue | march-april 2018 31

storage

T
he amounts of data processed by applications
are constantly growing. With this growth,
scaling storage becomes more challenging.
Every database system has its own tradeoffs.
Understanding them is crucial, as it helps in

selecting the right one from so many available choices.
Every application is different in terms of read/write

workload balance, consistency requirements, latencies,
and access patterns. Familiarizing yourself with database
and storage internals facilitates architectural decisions,
helps explain why a system behaves a certain way, helps
troubleshoot problems when they arise, and fine-tunes the
database for your workload.

It’s impossible to optimize a system in all directions.
In an ideal world there would be data structures
guaranteeing the best read and write performance with

Different
uses for read-

optimized
B-trees and

write-optimized
LSM-trees

ALEX PETROV

1 of 21 TEXT
ONLY

Algorithms
Behind

Modern
Storage
Systems

acmqueue | march-april 2018 32

storage

no storage overhead, but, of course, in practice it’s not
possible.

This article takes a closer look at two storage
system design approaches used in a majority of modern
databases—read-optimized B-trees1 and write-optimized
LSM (log-structured merge)-trees5— and describes their
use cases and tradeoffs.

B-TREES
B-trees are a popular read-optimized indexing data
structure and generalization of binary trees. They come
in many variations and are used in many databases
(including MySQL InnoDB4 and PostgreSQL7) and even file
systems (HFS+8, HTrees in ext49). The B in B-tree stands for
Bayer, the author of the original data structure, or Boeing,
where he worked at that time.

In binary tree every node has two children (referred as a
left and a right child). Left and right subtrees hold the keys
that are less than and greater than the current node key,
respectively. To keep the tree depth to a minimum, a binary
tree has to be balanced: when randomly ordered keys are
being added to the tree, it is natural that one side of the
tree will eventually get deeper than the other.

One way to rebalance a binary tree is to use so-called
rotation: rearrange nodes, pushing the parent node of the
longer subtree down below its child and pulling this child
up, effectively placing it instead of its parent. Figure 1 is
an example of rotation used for balancing in a binary tree.
On the left, a binary tree is unbalanced after adding node
2 to it. In order to balance it, node 3 is used as a pivot (the
tree is rotated around it). Then node 5, previously a root

2 of 21

acmqueue | march-april 2018 33

storage

node and a parent node for 3, becomes its child node. After
the rotation step is done, the height of the left subtree
decreases by one and the height of the right subtree
increases by one. The maximum depth of the tree has
decreased.

Binary trees are most useful as in-memory data
structures. Because of balancing (the need to keep the
depth of all subtrees to a minimum) and low fanout (a
maximum of two pointers per node), they don’t work
well on disk. B-trees allow for storing more than two
pointers per node and work well with block devices by
matching the node size to the page size (e.g., 4 KB). Some
implementations today use larger node sizes, spanning
across multiple pages in size.

B-trees have the following properties:
3 Sorted. This allows sequential scans and simplifies
lookups.
3 Self-balancing. There’s no need to balance the tree during

3 of 21

5

3

3

2 5

2

FIGURE 1: Example of rotation used for balancing in binary tree

1

acmqueue | march-april 2018 34

storage

insertion and deletion: when a B-tree node is full, it’s split in
two; when occupancy of the neighboring nodes falls down to
a certain threshold, the nodes are merged. This also means
that leaves are equally distant from the root and can be
located in the same amount of steps during lookup.
3 Guarantee of logarithmic lookup time. This makes
B-trees a good choice for database indexes, where lookup
times are important.
3 Mutable. Inserts, updates, and deletes (also, subsequent
splits and merges) are performed on disk in place. To
make in-place updates possible, a certain amount of
space overhead is required. A B-tree can be organized as
a clustered index, where actual data is stored on the leaf
nodes or as a heap file with an unclustered B-tree index.

This article discusses the B+tree,3 which is a modern
variant of the B-tree and often used for database storage.
The B+tree is different from the original B-tree1 in that: (a)
it has an additional level of linked leaf nodes holding the
values; and (b) these values cannot be stored on internal
nodes.

Anatomy of the B-tree
Let’s first take a closer look at the B-tree building blocks,
illustrated in figure 2. B-trees have several node types:
root, internal, and leaf. Root (top) is the node that has no
parents (i.e., it is not a child of any other node). Internal
nodes (middle) have both a parent and children; they
connect a root node with leaf nodes. Leaf nodes (bottom)
carry the data and have no children. Figure 2 depicts a
B-tree with a branching factor of four (four pointers, three
keys in internal nodes, and four key/value pairs on leaves).

4 of 21

acmqueue | march-april 2018 35

storage

B-trees are characterized by the following:
3 Branching factor–the number (N) of pointers to the child
nodes. Along with the pointers, root and internal nodes
hold up to N-1 keys.
3 Occupancy–how many pointers to child items the node
is currently holding, out of the maximum available. For
example, if the tree-branching factor is N, and the node is
currently holding N/2 pointers, occupancy is 50 percent.
3 Height–the number of B-tree levels, signifying how many
pointers have to be followed during lookup.

Every nonleaf node in the tree holds up to N keys (index
entries), separating the tree into N+1 subtrees that can
be located by following a corresponding pointer. Pointer i
from an entry Ki points to a subtree in which all the index
entries are such that Ki-1 <= Ksearched < Ki (where K is a set of
keys). The first and the last pointers are the special cases,
pointing to subtrees in which all the entries are less than
or equal to K0 in the case of the leftmost child, or greater
than KN-1 in the case of the rightmost child. A leaf node may
also hold a pointer to the previous and next nodes on the
same level, forming a doubly linked list of sibling nodes.
Keys in all the nodes are always sorted.

5 of 21

FIGURE 2: example of a B-Tree 2

acmqueue | march-april 2018 36

storage

Lookups
When performing lookups, the search starts at the root
node and follows internal nodes recursively down to the
leaf level. On each level, the search space is reduced to
the child subtree (the range of this subtree includes the
searched value) by following the child pointer. Figure 3
shows a lookup in a B-tree making a single root-to-leaf
pass, following the pointers “between” the two keys, one of
which is greater than (or equal to) the searched term, and
the other of which is less than the searched term. When
a point query is performed, the search is complete after
locating the leaf node. During the range scan, the keys and
values of the found leaf, and then the sibling leaf’s nodes
are traversed, until the end of the range is reached.

In terms of complexity, B-trees guarantee log(n) lookup,
because finding a key within the node is performed using

6 of 21

FIGURE 3: single Root-to-Leaf pass

1 3 4 6 7 8 10 13 14 18 19 21 24 37 40 45 71

FIGURE 4: Binary search of a B-Tree

3
4

acmqueue | march-april 2018 37

storage

binary search, shown in figure 4. Binary search is easily
explained in terms of searching for words beginning with a
certain letter in the dictionary, where all words are sorted
alphabetically. First you open the dictionary exactly in the
middle. If the searched letter is alphabetically “less than”
(appears earlier than) the one opened, you continue your
search in the left half of the dictionary; otherwise, you
continue in the right half. You keep reducing the remaining
page range by half and picking the side to follow until you
find the searched letter. Every step halves the search space,
therefore making the lookup time logarithmic. Searches in
B-trees have logarithmic complexity, since on the node level
keys are sorted, and the binary search is performed in order
to find a match. This is also why it’s important to keep the
occupancy high and uniform across the tree.

Insertions, updates, and deletions
When performing insertions, the first step is to locate the
target leaf. For that, the aforementioned search algorithm
is used. After the target leaf is located, key and value are
appended to it. If the leaf does not have enough free space,
the situation is called overflow, and the leaf has to be split
in two. This is done by allocating a new leaf, moving half
the elements to it and appending a pointer to this newly
allocated leaf to the parent. If the parent doesn’t have free
space either, a split is performed on the parent level as well.
The operation continues until the root is reached. When the
root overflows, its contents are split between the newly
allocated nodes, and the root node itself is overwritten in
order to avoid relocation. This also implies that the tree (and
its height) always grows by splitting the root node.

7 of 21

acmqueue | march-april 2018 38

storage

LSM-TREES
The log-structured merge-tree is an immutable disk-
resident write-optimized data structure. It is most useful in
systems where writes are more frequent than lookups that
retrieve the records. LSM-trees have been getting more
attention because they can eliminate random insertions,
updates, and deletions.

Anatomy of the LSM-tree
To allow sequential writes, LSM-trees batch writes and
updates in a memory-resident table (often implemented
using a data structure allowing logarithmic time lookups,
such as a binary search tree or skip list) until its size
reaches a threshold, at which point it is written on disk (this
operation is called a flush). Retrieving the data requires
searching all disk-resident parts of the tree, checking
the in-memory table, and merging their contents before
returning the result. Figure 5 shows the structure of
an LSM-tree: a memory-resident table used for writes.
Whenever the memory table is large enough, its sorted
contents are written on disk. Reads are served, hitting

8 of 21

memory

writes reads reads

disk

key5

key6

key8

key9

flush key3

key4

key7

key8

key1

key2

key3

key4

key1

key2

key3

key4

FIGURE 5: Structure of an LSM Tree5

acmqueue | march-april 2018 39

storage

both disk- and memory-resident tables, requiring a merge
process to reconcile the data.

Sorted String Tables
Many modern LSM-tree implementations (such as
RocksDB and Apache Cassandra) implement disk-resident
tables as SSTables (Sorted String Tables), because of their
simplicity (easy to write, search, and read) and merge
properties (during the merge, source SSTable scans and
merged result writes are sequential).

An SSTable is a disk-resident ordered immutable data
structure. Structurally, an SSTable is split in two parts:
data and index blocks, as shown in figure 6. A data block
consists of sequentially written unique key/value pairs,
ordered by key. An index block contains keys mapped to
data-block pointers, pointing to where the actual record
is located. An index is often implemented using a format
optimized for quick searches, such as a B-tree, or using
a hash table for a point query. Every value item in an
SSTable has a timestamp associated with it. This specifies

9 of 21

FIGURE 6: Structure of an SSTable

index block data block

key1:offset1

key2:offset2

key3:offset3

key4:offset4

key1

key2

key3

key4

value1

value2

value3

value46

acmqueue | march-april 2018 40

storage

the write time for inserts and updates (which are often
indistinguishable) and removal time for deletes.

SSTables have some nice properties:
3 Point queries (i.e., finding a value by key) can be done
quickly by looking up the primary index.
3 Scans (i.e., iterating over all key/value pairs in a specified
key range) can be done efficiently simply by reading key/
value pairs sequentially from the data block.

An SSTable represents a snapshot of all database
operations over a period in time, as the SSTable is created
by the flush process from the memory-resident table that
served as a buffer for operations against the database
state for this period.

Lookups
Retrieving data requires searching all SSTables on disk,
checking the memory-resident tables, and merging their
contents together before returning the result. The merge
step during the read is required since the searched data
can reside in multiple SSTables.

The merge step is also necessary to ensure that the
deletes and updates work. Deletes in an LSM-tree insert
placeholders (often called tombstones), specifying which
key was marked for deletion. Similarly, an update is just
a record with a bigger timestamp. During the read, the
records that get shadowed by deletes are skipped and not
returned to the client. A similar thing happens with the
updates: out of two records with the same key, only the
one with the later timestamp is returned. Figure 7 shows a
merge step reconciling the data stored in separate tables
for the same key: as shown here, the record for Alex was

10 of 21

acmqueue | march-april 2018 41

storage

written with timestamp 100 and updated with a new phone
and timestamp 200; the record for John was deleted. The
other two entries are taken as is, as they’re not shadowed.

To reduce the number of searched SSTables and to avoid
checking every SSTable for the searched key, many storage
systems employ a data structure known as a Bloom filter10.
This is a probabilistic data structure that can be used to
test whether an element is a member of the set. It can
produce false positive matches (i.e., state that the element
is a member of the set, while it is not, in fact, present there)
but cannot produce false-negatives (i.e., if a negative
match is returned, the element is guaranteed not to be a
member of the set). In other words, a Bloom filter is used
to tell if the key “might be in an SSTable” or “is definitely

FIGURE 7: Example of a Merge step

Alex: (phone: 111-222-333, ts: 100)

John: (phone: 333-777-444, ts: 100)

Sid: (phone: 777-555-444, ts: 100)

Alex: (phone: 555-777-888, ts: 200)

John: (DELETE, ts: 200)

Nancy: (phone: 777-333-222, ts: 200)

Alex: (phone: 555-777-888, ts: 200)

Nancy: (phone: 777-333-222, ts: 200)

Sid: (phone: 777-555-444, ts: 100)

11 of 21

7

acmqueue | march-april 2018 42

storage

not in an SSTable.” SSTables for which a Bloom filter has
returned a negative match are skipped during the query.

LSM-tree maintenance
Since SSTables are immutable, they are written
sequentially and hold no reserved empty space for in-
place modifications. This means insert, update, or delete
operations would require rewriting the whole file. All
operations modifying the database state are “batched” in
the memory-resident table. Over time, the number of disk-
resident tables will grow (data for the same key located
in several files, multiple versions of the same record,
redundant records that got shadowed by deletes), and the
reads will continue getting more expensive.

To reduce the cost of reads, reconcile space occupied
by shadowed records, and reduce the number of disk-
resident tables, LSM-trees require a compaction process
that reads complete SSTables from disk and merges them.
Because SSTables are sorted by key and compaction works
like merge-sort, this operation is very efficient: records
are read from several sources sequentially, and merged
output can be appended to the results file right away, also
sequentially. One of the advantages of merge-sort is that it
can work efficiently even for merging large files that don’t
fit in memory. The resulting table preserves the order of
the original SSTables.

During this process, merged SSTables are discarded
and replaced with their “compacted” versions, shown in
figure 8. Compaction takes multiple SSTables and merges
them into one. Some database systems logically group the
tables of the same size to the same “level” and start the

12 of 21

acmqueue | march-april 2018 43

storage

merge process whenever enough tables are on a particular
level. After compaction, the number of SSTables that have
to be addressed is reduced, making queries more efficient.

ATOMICITY AND DURABILITY
To reduce the number of I/O operations and make them
sequential, both B-trees and LSM-trees batch operations in
memory before making an actual update. This means that
data integrity is not guaranteed during failure scenarios
and atomicity (applying a series of changes atomically, as
if they were a single operation, or not applying them at
all) and durability (ensuring that in the face of a process
crash or power loss, data has reached persistent storage)
properties are not ensured.

To solve that problem, most modern storage systems
employ WAL (write-ahead logging). The key idea behind
WAL is that all the database state modifications are first
durably persisted in the append-only log on disk. If the
process crashes in the middle of an operation, the log is
replayed, ensuring that no data is lost and all changes
appear atomically.

In B-trees, using WAL can be understood as writing
changes to data files only after they have been logged.
Usually log sizes for B-tree storage systems are relatively
small: as soon as changes are applied to the persisted

FIGURE 8: Compaction

13 of 21

8

acmqueue | march-april 2018 44

storage

storage, they can be discarded. WAL serves as a backup for
the in-flight operations: any changes that were not applied
to data pages can be redone from the log records.

In LSM-trees, WAL is used to persist changes that
have reached the memtables but have not yet been fully
flushed on disk. As soon as a memtable is fully flushed and
switched so that read operations can be served from the
newly created SSTable, the WAL segment holding the data
for the flushed memtable can be discarded.

SUMMARIZING
One of the biggest differences between the B-tree and
LSM-tree data structures is what they optimize for and
what implications these optimizations have.

Let’s compare the properties of B-trees with LSM-trees.
In summary, B-trees have the following properties:
3 They are mutable, which allows for in-place updates by
introducing some space overhead and a more involved
write path, although it does not require complete file
rewrites or multisource merges.
3 They are read-optimized, meaning they do not require
reading from (and subsequently merging) multiple sources,
thus simplifying the read path.
3 Writes might trigger a cascade of node splits, making
some write operations more expensive.
3 They are optimized for paged environments (block
storage), where byte addressing is not possible.
3 Fragmentation, caused by frequent updates, might
require additional maintenance and block rewrites.
B-trees, however, usually require less maintenance than
LSM-tree storage.

14 of 21

acmqueue | march-april 2018 45

storage

3 Concurrent access requires reader/writer isolation and
involves chains of locks and latches.
LSM-trees have these properties:
3 They are immutable. SSTables are written on disk once
and never updated. Compaction is used to reconcile space
occupied by removed items and merge same-key data
from multiple data files. Merged SSTables are discarded
and removed after a successful merge as part of the
compaction process. Another useful property coming
from immutability is that flushed tables can be accessed
concurrently.
3 They are write optimized, meaning that writes are
buffered and flushed on disk sequentially, potentially
allowing for spatial locality on the disk.
3 Reads might require accessing data from multiple
sources, since data for the same key, written during
different times, might land in different data files. Records
have to go through the merge process before being
returned to the client.
3 Maintenance/compaction is required, as buffered writes
are flushed on disk.

EVALUATING STORAGE SYSTEMS
Developing storage systems always presents the same
challenges and factors to consider. Deciding what to
optimize for has a substantial influence on the result.
You can spend more time during write in order to lay out
structures for more efficient reads, reserve extra space
for in-place updates, facilitate faster writes, and buffer
data in memory to ensure sequential write operations.
It is impossible, however, to do this all at once. An ideal

15 of 21

acmqueue | march-april 2018 46

storage

storage system would have the lowest read cost, lowest
write cost, and no overhead. In practice, data structures
compromise among multiple factors. Understanding these
compromises is important.

Researchers from Harvard’s DASlab (Data System
Laboratory) summarized the three key parameters
database systems are optimized for: read overhead,
update overhead, and memory overhead, or RUM.
Understanding which of these parameters are most
important for your use-case influences the choice of
data structures, access methods, and even suitability for
certain workloads, as the algorithms are tailored having
a specific use-case in mind.

The RUM Conjecture2 states that setting an upper
bound for two of the mentioned overheads also sets a
lower bound for the third one. For example, B-trees are
read-optimized at the cost of write overhead and having to
reserve empty space for the updates (thereby resulting in
memory overhead). LSM-trees have less space overhead
at a cost of read overhead brought on by having to access
multiple disk-resident tables during the read. These three
parameters form a competing triangle, and improvement
on one side may imply compromise on the other. Figure 9
illustrates the RUM Conjecture.

B-trees optimize for read performance: the index is
laid out in a way that minimizes the disk accesses required
to traverse the tree. Only a single index file has to be
accessed to locate the data. This is achieved by keeping this
index file mutable, which also increases write amplification
resulting from node splits and merges, relocation, and
fragmentation/imbalance-related maintenance. To

16 of 21

acmqueue | march-april 2018 47

storage

amortize update costs and reduce the number of splits,
B-trees reserve extra free space in nodes on all levels. This
helps postpone write amplification until the node is full.
In short, B-trees trade update and memory overhead for
better read performance.

LSM-trees optimize for write performance. Neither
updates nor deletes require locating data on disk (which
is the case with B-trees), and they guarantee sequential
writes by buffering all insert, update, and delete operations
in memory-resident tables. This comes at the price of
higher maintenance costs and a need for compaction
(which is just a way of mitigating the ever-growing price
of reads and reducing the number of disk-resident tables)
and more expensive reads (as the data has to be read from
multiple sources and merged). At the same time, LSM-

FIGURE 9: The RUM Conjecture

read
(read optimized)

update
(write optimized)

memory
(space optimized)

differential DS
compressible/

approximate DS

point:
indexes

adaptive

17 of 21

9

acmqueue | march-april 2018 48

storage

trees eliminate memory overhead by not reserving any
empty space (unlike B-tree nodes, which have an average
occupancy of 70 percent, an overhead required for in-place
updates) and allowing block compression because of the
better occupancy and immutability of the end file. In short,
LSM-trees trade read performance and maintenance for
better write performance and lower memory overhead.

There are data structures optimizing for each desired
property. Using adaptive data structures allows for better
read performance at the price of higher maintenance
costs. Adding metadata facilitating traversals (such as
fractional cascading) will have an impact on write time
and take space, but can improve the read time. Optimizing
for memory efficiency using compression (for example,
algorithms such as Gorilla compression,6 delta encoding,
and many others) will add some overhead for packing the
data on writes and unpacking it on reads. Sometimes, you
can trade functionality for efficiency. For example, heap
files and hash indexes can provide great performance
guarantees and smaller space overhead because of the file
format simplicity, for the price of not being able to perform
anything but point queries. You can also trade precision for
space and efficiency by using approximate data structures,
such as the Bloom filter, HyperLogLog, Count-Min sketch,
and many others.

The three tunables—read, update, and memory
overheads—can help you evaluate the database and gain a
deeper understanding of the workloads for which it’s best
suited. All of them are quite intuitive, and it’s often easy to
sort the storage system into one of the buckets and guess
how it’s going to perform, then validate your hypothesis

18 of 21

acmqueue | march-april 2018 49

storage

through extensive testing.
Of course, there are other

important factors to consider
when evaluating a storage
system, such as maintenance
overhead, operational simplicity,
system requirements, suitability
for frequent updates and
deletes, access patterns, and so
on. The RUM Conjecture is just a
rule of thumb that helps develop
an intuition and provide an initial
direction. Understanding your
workload is the first step on the
way to building a scalable back
end.

Some factors may vary
from implementation to
implementation, and even
two databases that use

similar storage-design principles may end up performing
differently. Databases are complex systems with many
moving parts and are an important and integral part of
many applications. This information will help you peek
under the hood of a database and, knowing the difference
between the underlying data structures and their inner
doings, decide what’s best for you.

References
1. Comer, D. 1979. The ubiquitous B-tree. Computing

Surveys 11(2); 121-137; http://citeseerx.ist.psu.edu/viewdoc/

19 of 21

Related articles

3 The Five-minute Rule: 20 Years Later
and How Flash Memory Changes the Rules
Goetz Graefe, Hewlett-Packard Laboratories
The old rule continues to evolve, while flash
memory adds two new rules.
https://queue.acm.org/detail.cfm?id=1413264

3 Disambiguating Databases
Rick Richardson
Use the database built for
your access model.
https://queue.acm.org/detail.cfm?id=2696453

3 You’re Doing It Wrong
Poul-Henning Kamp
Think you’ve mastered the art of server
performance? Think again.
https://queue.acm.org/detail.cfm?id=1814327

acmqueue | march-april 2018 50

storage

download?doi=10.1.1.96.6637&rep=rep1&type=pdf.
2. Data Systems Laboratory at Harvard. The RUM

Conjecture; http://daslab.seas.harvard.edu/rum-
conjecture/.

3. Graefe, G. 2011. Modern B-tree techniques. Foundations
and Trends in Databases 3(4): 203-402; http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=r
ep1&type=pdf.

4. MySQL 5.7 Reference Manual. The physical structure of
an InnoDB index; https://dev.mysql.com/doc/refman/5.7/
en/innodb-physical-structure.html.

5. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E. 1996. The log-
structured merge(LSM-tree). Acta Informatica 33(4): 351-
385; http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.44.2782&rep=rep1&type=pdf.

6. Pelkonen, T., Franklin, S.Teller, J., Cavallaro, P., Huang, Q.,
Meza, J., Veeraraghavan, K. 2015. Gorilla: a fast, scalable,
in-memory time series database. Proceedings of the
VLDB Endowment 8(12): 1816-1827; http://www.vldb.org/
pvldb/vol8/p1816-teller.pdf.

7. Suzuki, H. 2015-2018. The internals of PostreSQL; http://
www.interdb.jp/pg/pgsql01.html.

8. Apple HFS Plus Volume Format; https://developer.apple.
com/legacy/library/technotes/tn/tn1150.html#BTrees

9. Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas,
A., Vivier, L. (2007). The new ext4 filesystem: current
status and future plans. Proceedings of the Linux
Symposium. Ottawa, Canada: Red Hat. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.111.798&rep=re
p1&type=pdf

10. Bloom, Burton H. (1970),“Space/time trade-offs in hash

20 of 21

acmqueue | march-april 2018 51

storage

coding with allowable errors”. Communications of the
ACM, 13 (7): 422–426

Alex Petrov (http://coffeenco.de/, @ifesdjeen) is an Apache
Cassandra committer and storage-systems enthusiast. Over
the past several years, he has worked on databases, building
distributed systems and data-processing pipelines for various
companies.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

21 of 21

SHAPE THE FUTURE OF COMPUTING!

We’re more than computational theorists,
database managers, UX mavens, coders and

developers. We’re on a mission to solve
tomorrow. ACM gives us the resources, the
access and the tools to invent the future.

Join ACM today at acm.org/join

BE CREATIVE. STAY CONNECTED. KEEP INVENTING.

CONTENTS2

