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T
he amounts of data processed by applications 
are constantly growing. With this growth, 
scaling storage becomes more challenging. 
Every database system has its own tradeoffs. 
Understanding them is crucial, as it helps in 

selecting the right one from so many available choices.
Every application is different in terms of read/write 

workload balance, consistency requirements, latencies, 
and access patterns. Familiarizing yourself with database 
and storage internals facilitates architectural decisions, 
helps explain why a system behaves a certain way, helps 
troubleshoot problems when they arise, and fine-tunes the 
database for your workload.

It’s impossible to optimize a system in all directions. 
In an ideal world there would be data structures 
guaranteeing the best read and write performance with 
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no storage overhead, but, of course, in practice it’s not 
possible. 

This article takes a closer look at two storage 
system design approaches used in a majority of modern 
databases—read-optimized B-trees1 and write-optimized 
LSM (log-structured merge)-trees5— and describes their 
use cases and tradeoffs. 

B-TREES
B-trees are a popular read-optimized indexing data 
structure and generalization of binary trees. They come 
in many variations and are used in many databases 
(including MySQL InnoDB4 and PostgreSQL7) and even file 
systems (HFS+8, HTrees in ext49). The B in B-tree stands for 
Bayer, the author of the original data structure, or Boeing, 
where he worked at that time. 

In binary tree every node has two children (referred as a 
left and a right child). Left and right subtrees hold the keys 
that are less than and greater than the current node key, 
respectively. To keep the tree depth to a minimum, a binary 
tree has to be balanced: when randomly ordered keys are 
being added to the tree, it is natural that one side of the 
tree will eventually get deeper than the other.

One way to rebalance a binary tree is to use so-called 
rotation: rearrange nodes, pushing the parent node of the 
longer subtree down below its child and pulling this child 
up, effectively placing it instead of its parent. Figure 1 is 
an example of rotation used for balancing in a binary tree. 
On the left, a binary tree is unbalanced after adding node 
2 to it. In order to balance it, node 3 is used as a pivot (the 
tree is rotated around it). Then node 5, previously a root 
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node and a parent node for 3, becomes its child node. After 
the rotation step is done, the height of the left subtree 
decreases by one and the height of the right subtree 
increases by one. The maximum depth of the tree has 
decreased.

Binary trees are most useful as in-memory data 
structures. Because of balancing (the need to keep the 
depth of all subtrees to a minimum) and low fanout (a 
maximum of two pointers per node), they don’t work 
well on disk. B-trees allow for storing more than two 
pointers per node and work well with block devices by 
matching the node size to the page size (e.g., 4 KB). Some 
implementations today use larger node sizes, spanning 
across multiple pages in size. 

B-trees have the following properties: 
3 Sorted. This allows sequential scans and simplifies 
lookups.
3 Self-balancing. There’s no need to balance the tree during 
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insertion and deletion: when a B-tree node is full, it’s split in 
two; when occupancy of the neighboring nodes falls down to 
a certain threshold, the nodes are merged. This also means 
that leaves are equally distant from the root and can be 
located in the same amount of steps during lookup.
3 Guarantee of logarithmic lookup time. This makes 
B-trees a good choice for database indexes, where lookup 
times are important.
3 Mutable. Inserts, updates, and deletes (also, subsequent 
splits and merges) are performed on disk in place. To 
make in-place updates possible, a certain amount of 
space overhead is required. A B-tree can be organized as 
a clustered index, where actual data is stored on the leaf 
nodes or as a heap file with an unclustered B-tree index.

This article discusses the B+tree,3 which is a modern 
variant of the B-tree and often used for database storage. 
The B+tree is different from the original B-tree1 in that: (a) 
it has an additional level of linked leaf nodes holding the 
values; and (b) these values cannot be stored on internal 
nodes.

Anatomy of the B-tree
Let’s first take a closer look at the B-tree building blocks, 
illustrated in figure 2. B-trees have several node types: 
root, internal, and leaf. Root (top) is the node that has no 
parents (i.e., it is not a child of any other node). Internal 
nodes (middle) have both a parent and children; they 
connect a root node with leaf nodes. Leaf nodes (bottom) 
carry the data and have no children. Figure 2 depicts a 
B-tree with a branching factor of four (four pointers, three 
keys in internal nodes, and four key/value pairs on leaves).
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B-trees are characterized by the following:
3 Branching factor–the number (N) of pointers to the child 
nodes. Along with the pointers, root and internal nodes 
hold up to N-1 keys.
3 Occupancy–how many pointers to child items the node 
is currently holding, out of the maximum available. For 
example, if the tree-branching factor is N, and the node is 
currently holding N/2 pointers, occupancy is 50 percent. 
3 Height–the number of B-tree levels, signifying how many 
pointers have to be followed during lookup.

Every nonleaf node in the tree holds up to N keys (index 
entries), separating the tree into N+1 subtrees that can 
be located by following a corresponding pointer. Pointer i 
from an entry Ki points to a subtree in which all the index 
entries are such that Ki-1 <= Ksearched < Ki (where K is a set of 
keys). The first and the last pointers are the special cases, 
pointing to subtrees in which all the entries are less than 
or equal to K0 in the case of the leftmost child, or greater 
than KN-1 in the case of the rightmost child. A leaf node may 
also hold a pointer to the previous and next nodes on the 
same level, forming a doubly linked list of sibling nodes. 
Keys in all the nodes are always sorted.
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Lookups
When performing lookups, the search starts at the root 
node and follows internal nodes recursively down to the 
leaf level. On each level, the search space is reduced to 
the child subtree (the range of this subtree includes the 
searched value) by following the child pointer. Figure 3 
shows a lookup in a B-tree making a single root-to-leaf 
pass, following the pointers “between” the two keys, one of 
which is greater than (or equal to) the searched term, and 
the other of which is less than the searched term. When 
a point query is performed, the search is complete after 
locating the leaf node. During the range scan, the keys and 
values of the found leaf, and then the sibling leaf’s nodes 
are traversed, until the end of the range is reached. 

In terms of complexity, B-trees guarantee log(n) lookup, 
because finding a key within the node is performed using 
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binary search, shown in figure 4. Binary search is easily 
explained in terms of searching for words beginning with a 
certain letter in the dictionary, where all words are sorted 
alphabetically. First you open the dictionary exactly in the 
middle. If the searched letter is alphabetically “less than” 
(appears earlier than) the one opened, you continue your 
search in the left half of the dictionary; otherwise, you 
continue in the right half. You keep reducing the remaining 
page range by half and picking the side to follow until you 
find the searched letter. Every step halves the search space, 
therefore making the lookup time logarithmic. Searches in 
B-trees have logarithmic complexity, since on the node level 
keys are sorted, and the binary search is performed in order 
to find a match. This is also why it’s important to keep the 
occupancy high and uniform across the tree.

Insertions, updates, and deletions
When performing insertions, the first step is to locate the 
target leaf. For that, the aforementioned search algorithm 
is used. After the target leaf is located, key and value are 
appended to it. If the leaf does not have enough free space, 
the situation is called overflow, and the leaf has to be split 
in two. This is done by allocating a new leaf, moving half 
the elements to it and appending a pointer to this newly 
allocated leaf to the parent. If the parent doesn’t have free 
space either, a split is performed on the parent level as well. 
The operation continues until the root is reached. When the 
root overflows, its contents are split between the newly 
allocated nodes, and the root node itself is overwritten in 
order to avoid relocation. This also implies that the tree (and 
its height) always grows by splitting the root node.
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LSM-TREES
The log-structured merge-tree is an immutable disk-
resident write-optimized data structure. It is most useful in 
systems where writes are more frequent than lookups that 
retrieve the records. LSM-trees have been getting more 
attention because they can eliminate random insertions, 
updates, and deletions.

Anatomy of the LSM-tree
To allow sequential writes, LSM-trees batch writes and 
updates in a memory-resident table (often implemented 
using a data structure allowing logarithmic time lookups, 
such as a binary search tree or skip list) until its size 
reaches a threshold, at which point it is written on disk (this 
operation is called a flush). Retrieving the data requires 
searching all disk-resident parts of the tree, checking 
the in-memory table, and merging their contents before 
returning the result. Figure 5 shows the structure of 
an LSM-tree: a memory-resident table used for writes. 
Whenever the memory table is large enough, its sorted 
contents are written on disk. Reads are served, hitting 
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both disk- and memory-resident tables, requiring a merge 
process to reconcile the data.

Sorted String Tables
Many modern LSM-tree implementations (such as 
RocksDB and Apache Cassandra) implement disk-resident 
tables as SSTables (Sorted String Tables), because of their 
simplicity (easy to write, search, and read) and merge 
properties (during the merge, source SSTable scans and 
merged result writes are sequential). 

An SSTable is a disk-resident ordered immutable data 
structure. Structurally, an SSTable is split in two parts: 
data and index blocks, as shown in figure 6. A data block 
consists of sequentially written unique key/value pairs, 
ordered by key. An index block contains keys mapped to 
data-block pointers, pointing to where the actual record 
is located. An index is often implemented using a format 
optimized for quick searches, such as a B-tree, or using 
a hash table for a point query. Every value item in an 
SSTable has a timestamp associated with it. This specifies 
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the write time for inserts and updates (which are often 
indistinguishable) and removal time for deletes. 

SSTables have some nice properties:
3 Point queries (i.e., finding a value by key) can be done 
quickly by looking up the primary index.
3 Scans (i.e., iterating over all key/value pairs in a specified 
key range) can be done efficiently simply by reading key/
value pairs sequentially from the data block. 

An SSTable represents a snapshot of all database 
operations over a period in time, as the SSTable is created 
by the flush process from the memory-resident table that 
served as a buffer for operations against the database 
state for this period.

Lookups
Retrieving data requires searching all SSTables on disk, 
checking the memory-resident tables, and merging their 
contents together before returning the result. The merge 
step during the read is required since the searched data 
can reside in multiple SSTables.

The merge step is also necessary to ensure that the 
deletes and updates work. Deletes in an LSM-tree insert 
placeholders (often called tombstones), specifying which 
key was marked for deletion. Similarly, an update is just 
a record with a bigger timestamp. During the read, the 
records that get shadowed by deletes are skipped and not 
returned to the client. A similar thing happens with the 
updates: out of two records with the same key, only the 
one with the later timestamp is returned. Figure 7 shows a 
merge step reconciling the data stored in separate tables 
for the same key: as shown here, the record for Alex was 
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written with timestamp 100 and updated with a new phone 
and timestamp 200; the record for John was deleted. The 
other two entries are taken as is, as they’re not shadowed.

To reduce the number of searched SSTables and to avoid 
checking every SSTable for the searched key, many storage 
systems employ a data structure known as a Bloom filter10. 
This is a probabilistic data structure that can be used to 
test whether an element is a member of the set. It can 
produce false positive matches (i.e., state that the element 
is a member of the set, while it is not, in fact, present there) 
but cannot produce false-negatives (i.e., if a negative 
match is returned, the element is guaranteed not to be a 
member of the set). In other words, a Bloom filter is used 
to tell if the key “might be in an SSTable” or “is definitely 

FIGURE 7: Example of a Merge step

Alex: (phone: 111-222-333, ts: 100)

John: (phone: 333-777-444, ts: 100)

Sid: (phone: 777-555-444, ts: 100)

Alex: (phone: 555-777-888, ts: 200)

John: (DELETE, ts: 200)

Nancy: (phone: 777-333-222, ts: 200)

Alex: (phone: 555-777-888, ts: 200)

Nancy: (phone: 777-333-222, ts: 200)

Sid: (phone: 777-555-444, ts: 100)
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not in an SSTable.” SSTables for which a Bloom filter has 
returned a negative match are skipped during the query. 

LSM-tree maintenance
Since SSTables are immutable, they are written 
sequentially and hold no reserved empty space for in-
place modifications. This means insert, update, or delete 
operations would require rewriting the whole file. All 
operations modifying the database state are “batched” in 
the memory-resident table. Over time, the number of disk-
resident tables will grow (data for the same key located 
in several files, multiple versions of the same record, 
redundant records that got shadowed by deletes), and the 
reads will continue getting more expensive. 

To reduce the cost of reads, reconcile space occupied 
by shadowed records, and reduce the number of disk-
resident tables, LSM-trees require a compaction process 
that reads complete SSTables from disk and merges them. 
Because SSTables are sorted by key and compaction works 
like merge-sort, this operation is very efficient: records 
are read from several sources sequentially, and merged 
output can be appended to the results file right away, also 
sequentially. One of the advantages of merge-sort is that it 
can work efficiently even for merging large files that don’t 
fit in memory. The resulting table preserves the order of 
the original SSTables. 

During this process, merged SSTables are discarded 
and replaced with their “compacted” versions, shown in 
figure 8. Compaction takes multiple SSTables and merges 
them into one. Some database systems logically group the 
tables of the same size to the same “level” and start the 
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merge process whenever enough tables are on a particular 
level. After compaction, the number of SSTables that have 
to be addressed is reduced, making queries more efficient. 

ATOMICITY AND DURABILITY
To reduce the number of I/O operations and make them 
sequential, both B-trees and LSM-trees batch operations in 
memory before making an actual update. This means that 
data integrity is not guaranteed during failure scenarios 
and atomicity (applying a series of changes atomically, as 
if they were a single operation, or not applying them at 
all) and durability (ensuring that in the face of a process 
crash or power loss, data has reached persistent storage) 
properties are not ensured.

To solve that problem, most modern storage systems 
employ WAL (write-ahead logging). The key idea behind 
WAL is that all the database state modifications are first 
durably persisted in the append-only log on disk. If the 
process crashes in the middle of an operation, the log is 
replayed, ensuring that no data is lost and all changes 
appear atomically. 

In B-trees, using WAL can be understood as writing 
changes to data files only after they have been logged. 
Usually log sizes for B-tree storage systems are relatively 
small: as soon as changes are applied to the persisted 

FIGURE 8: Compaction
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storage, they can be discarded. WAL serves as a backup for 
the in-flight operations: any changes that were not applied 
to data pages can be redone from the log records.

In LSM-trees, WAL is used to persist changes that 
have reached the memtables but have not yet been fully 
flushed on disk. As soon as a memtable is fully flushed and 
switched so that read operations can be served from the 
newly created SSTable, the WAL segment holding the data 
for the flushed memtable can be discarded.

SUMMARIZING 
One of the biggest differences between the B-tree and 
LSM-tree data structures is what they optimize for and 
what implications these optimizations have. 

Let’s compare the properties of B-trees with LSM-trees. 
In summary, B-trees have the following properties:
3 They are mutable, which allows for in-place updates by 
introducing some space overhead and a more involved 
write path, although it does not require complete file 
rewrites or multisource merges.
3 They are read-optimized, meaning they do not require 
reading from (and subsequently merging) multiple sources, 
thus simplifying the read path.
3 Writes might trigger a cascade of node splits, making 
some write operations more expensive. 
3 They are optimized for paged environments (block 
storage), where byte addressing is not possible.
3 Fragmentation, caused by frequent updates, might 
require additional maintenance and block rewrites. 
B-trees, however, usually require less maintenance than 
LSM-tree storage.
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3 Concurrent access requires reader/writer isolation and 
involves chains of locks and latches.
LSM-trees have these properties:
3 They are immutable. SSTables are written on disk once 
and never updated. Compaction is used to reconcile space 
occupied by removed items and merge same-key data 
from multiple data files. Merged SSTables are discarded 
and removed after a successful merge as part of the 
compaction process. Another useful property coming 
from immutability is that flushed tables can be accessed 
concurrently.
3 They are write optimized, meaning that writes are 
buffered and flushed on disk sequentially, potentially 
allowing for spatial locality on the disk. 
3 Reads might require accessing data from multiple 
sources, since data for the same key, written during 
different times, might land in different data files. Records 
have to go through the merge process before being 
returned to the client. 
3 Maintenance/compaction is required, as buffered writes 
are flushed on disk. 

EVALUATING STORAGE SYSTEMS
Developing storage systems always presents the same 
challenges and factors to consider. Deciding what to 
optimize for has a substantial influence on the result. 
You can spend more time during write in order to lay out 
structures for more efficient reads, reserve extra space 
for in-place updates, facilitate faster writes, and buffer 
data in memory to ensure sequential write operations. 
It is impossible, however, to do this all at once. An ideal 

15 of 21



acmqueue | march-april 2018   46

storage

storage system would have the lowest read cost, lowest 
write cost, and no overhead. In practice, data structures 
compromise among multiple factors. Understanding these 
compromises is important.

Researchers from Harvard’s DASlab (Data System 
Laboratory) summarized the three key parameters 
database systems are optimized for: read overhead, 
update overhead, and memory overhead, or RUM. 
Understanding which of these parameters are most 
important for your use-case influences the choice of 
data structures, access methods, and even suitability for 
certain workloads, as the algorithms are tailored having 
a specific use-case in mind.

The RUM Conjecture2 states that setting an upper 
bound for two of the mentioned overheads also sets a 
lower bound for the third one. For example, B-trees are 
read-optimized at the cost of write overhead and having to 
reserve empty space for the updates (thereby resulting in 
memory overhead). LSM-trees have less space overhead 
at a cost of read overhead brought on by having to access 
multiple disk-resident tables during the read. These three 
parameters form a competing triangle, and improvement 
on one side may imply compromise on the other. Figure 9 
illustrates the RUM Conjecture.

B-trees optimize for read performance: the index is 
laid out in a way that minimizes the disk accesses required 
to traverse the tree. Only a single index file has to be 
accessed to locate the data. This is achieved by keeping this 
index file mutable, which also increases write amplification 
resulting from node splits and merges, relocation, and 
fragmentation/imbalance-related maintenance. To 
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amortize update costs and reduce the number of splits, 
B-trees reserve extra free space in nodes on all levels. This 
helps postpone write amplification until the node is full. 
In short, B-trees trade update and memory overhead for 
better read performance.

LSM-trees optimize for write performance. Neither 
updates nor deletes require locating data on disk (which 
is the case with B-trees), and they guarantee sequential 
writes by buffering all insert, update, and delete operations 
in memory-resident tables. This comes at the price of 
higher maintenance costs and a need for compaction 
(which is just a way of mitigating the ever-growing price 
of reads and reducing the number of disk-resident tables) 
and more expensive reads (as the data has to be read from 
multiple sources and merged). At the same time, LSM-

FIGURE 9: The RUM Conjecture

read
(read optimized)

update
(write optimized)

memory
(space optimized)

differential DS
compressible/

approximate DS

point:
indexes

adaptive

17 of 21

9



acmqueue | march-april 2018   48

storage

trees eliminate memory overhead by not reserving any 
empty space (unlike B-tree nodes, which have an average 
occupancy of 70 percent, an overhead required for in-place 
updates) and allowing block compression because of the 
better occupancy and immutability of the end file. In short, 
LSM-trees trade read performance and maintenance for 
better write performance and lower memory overhead.

There are data structures optimizing for each desired 
property. Using adaptive data structures allows for better 
read performance at the price of higher maintenance 
costs. Adding metadata facilitating traversals (such as 
fractional cascading) will have an impact on write time 
and take space, but can improve the read time. Optimizing 
for memory efficiency using compression (for example, 
algorithms such as Gorilla compression,6 delta encoding, 
and many others) will add some overhead for packing the 
data on writes and unpacking it on reads. Sometimes, you 
can trade functionality for efficiency. For example, heap 
files and hash indexes can provide great performance 
guarantees and smaller space overhead because of the file 
format simplicity, for the price of not being able to perform 
anything but point queries. You can also trade precision for 
space and efficiency by using approximate data structures, 
such as the Bloom filter, HyperLogLog, Count-Min sketch, 
and many others.

The three tunables—read, update, and memory 
overheads—can help you evaluate the database and gain a 
deeper understanding of the workloads for which it’s best 
suited. All of them are quite intuitive, and it’s often easy to 
sort the storage system into one of the buckets and guess 
how it’s going to perform, then validate your hypothesis 
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through extensive testing. 
Of course, there are other 

important factors to consider 
when evaluating a storage 
system, such as maintenance 
overhead, operational simplicity, 
system requirements, suitability 
for frequent updates and 
deletes, access patterns, and so 
on. The RUM Conjecture is just a 
rule of thumb that helps develop 
an intuition and provide an initial 
direction. Understanding your 
workload is the first step on the 
way to building a scalable back 
end. 

Some factors may vary 
from implementation to 
implementation, and even 
two databases that use 

similar storage-design principles may end up performing 
differently. Databases are complex systems with many 
moving parts and are an important and integral part of 
many applications. This information will help you peek 
under the hood of a database and, knowing the difference 
between the underlying data structures and their inner 
doings, decide what’s best for you.
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