
PacificA: Replication in Log-Based Distributed Storage Systems

Wei Lin, Mao Yang
Microsoft Research Asia

{weilin, maoyang}@microsoft.com

Lintao Zhang, Lidong Zhou
Microsoft Research Silicon Valley

{lintaoz, lidongz}@microsoft.com

ABSTRACT
Large-scale distributed storage systems have gained popu-
larity for storing and processing ever increasing amount of
data. Replication mechanisms are often key to achieving
high availability and high throughput in such systems. Re-
search on fundamental problems such as consensus has laid
out a solid foundation for replication protocols. Yet, both
the architectural design and engineering issues of practical
replication mechanisms remain an art.

This paper describes our experience in designing and im-
plementing replication for commonly used log-based storage
systems. We advocate a general replication framework that
is simple, practical, and strongly consistent. We show that
the framework is flexible enough to accommodate a variety
of different design choices that we explore. Using a proto-
type system called PacificA, we implemented three different
replication strategies, all using the same replication frame-
work. The paper reports detailed performance evaluation re-
sults, especially on system behavior during failure, reconcil-
iation, and recovery.

1. INTRODUCTION
There is a growing need for large-scale storage systems

to hold an ever increasing amount of digitized information.
To be cost-effective, such systems are often built with cheap
commodity components. Failures therefore become a norm
and fault tolerant mechanisms such as replication become
the key to the reliability and availability of such systems.

Well-known and provably correct replication protocols (e.g.,
Paxos [18]) exist. However, building practical distributed
storage systems is more than applying a known replication
protocol. There is a significant gap between “theoretical”
replication protocols and practical replication mechanisms.
For example, a theoretical design of replication protocols
is often guided with over-simplified performance metrics,
such as the number of message rounds, whereas a practical
replication mechanism aims to optimize end-to-end client-
perceived performance metrics, such as system throughput,
request processing latency, and recovery time after failure. A
theoretical design focuses on a single instance of the repli-
cation protocol, whereas a practical replication mechanism
must optimize overall performance of a system with multi-

ple instances that co-exist.
In this paper, we describe our experience in designing,

implementing, and evaluating the replication mechanism for
large-scale log-based storage system in a local-area-network
(LAN) cluster environment. Such log-based designs are com-
monly used in storage systems (e.g., [12, 13, 15, 24]) to
improve performance by transforming random writes to se-
quential writes and by allowing batching, as well as to sup-
port transactional semantics. Many recently proposed stor-
age systems (e.g., Petal [19], Frangipani [28], Boxwood [21],
and Bigtable [7]) for LAN-based clusters use logs.

Log-based storage systems expose a rich structure that
offers interesting design choices to explore. For example,
replication can be done at different semantic levels and to
different types of targets (e.g., to logical state, the log, or the
on-disk physical data.)

Rather than implementing different replication mechanisms
to explore the design choices, we have chosen to design and
implement a simple, practical, and provably correct common
replication framework. Different choices then translate into
different instantiations of the same replication framework.
This significantly reduces the overhead for implementing,
debugging, and maintaining the system, and facilitates fair
comparisons of different schemes.

The design of the replication framework reflects our strong
belief that provably correct replication protocols are impor-
tant foundations for practical replication mechanisms. A
well-defined system model clarifies the assumptions under
which the protocols work and allows us to understand and
assess the risks. In contrast, ad hoc replication protocols of-
ten fail in some unknown corner cases.

Choosing the appropriate replication protocols, as well as
choosing the right architectural designs, is the key to a good
practical replication mechanism. We believe that simplicity
and modularity are key ingredients to building practical sys-
tems. Our replication framework embraces these principles
through the following features: (i) the separation of replica-
group configuration management from data replication, with
Paxos for managing configurations and primary/backup [2,
22] for data replication, (ii) decentralized monitoring for de-
tecting failures and triggering reconfiguration, with monitor-
ing traffic follows the communication patterns of data repli-

1

cation, and (iii) a general and abstract model that clarifies
correctness and allows different practical instantiations.

In the context of log-based distributed systems, the repli-
cation framework also enables us to explore new replication
schemes that differ from those in previous systems such as
Boxwood and Bigtable. In particular, our schemes offer ap-
pealing advantages in terms of simplicity by not relying on a
separate lock service and in terms of reduced network traffic
due to better data co-location.

To evaluate the proposed replication schemes, we have
implemented PacificA, a prototype of a distributed log-based
system for storing structured and semi-structured web data.
We have performed extensive evaluations to understand the
performance and cost of various replication schemes, both
for a single replication instance and for an entire system with
multiple instances. System behaviors during failure and re-
covery are important in practice. We provide detailed analy-
sis of system behavior in those cases.

The paper is organized as follows. Section 2 describes
the replication framework we propose. Section 3 presents
different approaches that the framework can be applied to a
general log-based storage system. The implementation and
the evaluation of the replication schemes in the context of
PacificA are the focus of Section 4. Related work is surveyed
in Section 5. We conclude in Section 6.

2. PACIFICA REPLICATION FRAMEWORK
In this paper, we focus our attention on a local-area net-

work based cluster environment, where a system typically
consists of a large number of servers. Each server has one
or more CPUs, local memory, and one or more locally at-
tached disks. All servers are connected to a high-speed local
area network. We assume a single administrative domain,
where servers are all trusted. No security mechanisms are
considered.

Servers might fail. We assume fail-stop failures. We do
not assume a bound on the message delay between servers,
although they tend to be small in normal cases. Messages
could be dropped or re-ordered, but not injected or modified.
Network partitions could also occur. Clocks on servers are
not necessarily synchronized or even loosely synchronized,
but clock drifts are assumed to be bounded.

The system maintains a (large) set of data. Each piece of
data is replicated on a set of servers, referred to as the replica
group. Each server in a replica group serves as a replica. A
server can serve as replicas in multiple groups. The data
replication protocol follows the primary/backup paradigm.
One replica in a replica group is designated as the primary,
while others are called the secondaries. The composition of
a replica group, which indicates who the primary is and who
the secondaries are, is referred to as the configuration of the
replica group. The configuration for a replica group changes
due to replica failures or additions; versions are used to track
such changes.

We focus on replication protocols that achieve strong con-

sistency, because it represents the most natural consistency
model. Informally, strong consistency ensures that the repli-
cated system behaves the same as its non-replicated coun-
terpart that achieves semantics such as linearizability [14].
Coping with a weaker consistency model often adds com-
plexity to applications that are built on top of the replication
layer. In Subsection 2.7, we discuss one relaxation of strong
consistency and its implications.

2.1 Primary/Backup Data Replication
We adopt the primary/backup paradigm for data replica-

tion. We distinguish two types of client requests: queries
that do not modify the data and updates that do. In the
primary/backup paradigm, all requests are sent to the pri-
mary. The primary processes all queries locally and involves
all secondaries in processing updates. The primary/backup
paradigm is attractive in practice for several reasons. It is
simple and resembles closely the non-replicated case with
the primary as the sole access point. Queries, which tend
to dominate in many workloads, are processed directly on a
single server.

Strong consistency can be achieved if all servers in a replica
group process the same set of requests in the same order,
assuming that updates are deterministic. A primary there-
fore assigns continuous and monotonically increasing serial
numbers to updates and instructs all secondaries to process
requests continuously in this order. For clarity, we model a
replica as maintaining a prepared list of requests and a com-
mitted point to the list. The list is ordered based on the serial
numbers assigned to the requests and is continuous (i.e., re-
quest with serial number sn is inserted only after sn − 1
has been inserted.) The prefix of the prepared list up to the
committed point is referred to as the committed list. We de-
scribe the practical implementations of the abstract model in
Section 2.6.

The application state on the primary is the result of apply-
ing all requests in the committed list in the increasing order
of sequence numbers on the initial state. Requests on the
committed list are guaranteed not to be lost, as long as the
system does not experience failures that it cannot tolerate
(e.g., permanent failure of all replicas in the current config-
uration.) The uncommitted suffices of the prepared lists are
used to ensure that requests on a committed list are preserved
during reconfiguration. We use committedp to denote the set
of updates on server p’s committed list and preparedp for p’s
prepared list.

Normal-Case Query and Update Protocol. In the nor-
mal case (i.e., without reconfigurations), the data replica-
tion protocol is straightforward. When a primary receives
a query, it processes the query against the state represented
by the current committed list and returns the response im-
mediately.

For an update, the primary p assigns the next available
serial number to the request. It then sends the request with
its configuration version and the serial number in a prepare

2

message to all replicas. Upon receiving a prepare message,
a replica r inserts the request to its prepared list in the serial-
number order. The request is considered prepared on the
replica. r then sends an acknowledgment in a prepared mes-
sage to the primary. The request is committed when the pri-
mary receives acknowledgments from all replicas. At this
point, the primary moves its committed point forward to the
highest point such that all requests up to this point are com-
mitted. p then sends the acknowledgment to the client indi-
cating a successful completion. With each prepare message,
the primary further piggybacks the serial number at the com-
mitted point to inform the secondaries about all requests that
have been committed. A secondary can then move its com-
mitted point forward accordingly.

Because a primary adds a request into its committed list
(when moving the committed point forward) only after all
replicas have inserted it into their prepared list, the commit-
ted list on the primary is always a prefix of the prepared list
on any replica. Also, because a secondary adds a request
into its committed list only after the primary has done so, the
committed list on a secondary is guaranteed to be a prefix of
that on the primary. Therefore, this simple data replication
protocol upholds the following Commit Invariant.

Commit Invariant: Let p be the primary and q be any replica
in the current configuration, committedq ⊆ committedp ⊆
preparedq holds.

The basic primary/backup protocol works only when there
is no change in the configuration of the replica group. Our
replication framework separates configuration management
from data management. We describe configuration manage-
ment and its interaction with data replication in the next sub-
sections.

2.2 Configuration Management
In our design, a global configuration manager is in charge

of maintaining the configurations for all replica groups in the
system. For each replica group, the configuration manager
maintains the current configuration and its version.

A server could initiate reconfiguration when it suspects
(via failure detection) that a replica is faulty; the reconfigura-
tion would remove the faulty replica from the configuration.
A server could also propose to add new replicas to the con-
figuration; for example, to restore the desirable level of re-
dundancies. In either cases, a server sends the proposed new
configuration together with its current configuration version
to the configuration manager. The request will be honored if
and only if the version matches that of the current configura-
tion on the configuration manager. In this case, the proposed
new configuration is installed with the next higher version.
Otherwise, the request is rejected.

In the case of network partition that disconnects the pri-
mary from the secondaries, conflicting reconfiguration re-
quests might emerge: the primary might want to remove
some secondaries, whereas some secondaries try to remove

the primary. Because all those requests are based on the cur-
rent configuration, the first request that is accepted by the
configuration manager wins. All other conflicting requests
are rejected because the configuration manager has already
advanced to a new configuration with a higher version.

Any failure detection mechanism that ensures the follow-
ing Primary Invariant can be employed to trigger removal of
a current replica. In Section 2.3, we describe in details one
implementation of such a failure detection mechanism.

Primary Invariant: At any time, a server p considers itself
a primary only if the configuration manager has p as the pri-
mary in the current configuration it maintains. Hence, at any
time, there exists at most one server that considers itself a
primary for the replica group.

2.3 Leases and Failure Detection
Even with the configuration manager maintaining the truth

of the current configurations, Primary Invariant does not nec-
essarily hold. This is because the local views of the configu-
ration on different servers are not necessarily synchronized.
In particular, we must avoid the case where an old primary
and a new primary both process queries at the same time—
the old primary might not be aware that a reconfiguration
has created a new primary and has removed it from the con-
figuration. Because the new primary could have processed
new updates, the old primary might be processing queries on
outdated states, thus violating strong consistency.

Our solution is to use leases [11]. The primary takes
a lease from each of the secondaries by periodically send-
ing beacons to the secondaries and waiting for acknowledg-
ments. The primary considers its lease expired if a specified
lease period has passed since the sending time of the last
acknowledged beacon. When any lease from a secondary
expires, the primary no longer considers itself a primary and
stops processing queries or updates. In this case, the pri-
mary will contact the configuration manager to remove the
secondary from the current configuration.

A secondary acknowledges the beacons as long as the
sender remains the primary in the current configuration. If a
grace period has passed since the last received beacon from
the primary, then the secondary considers the lease to the
primary expired and will contact the configuration manager
to remove the current primary and become the new primary.

Assuming zero clock drift, as long as the grace period is
the same as or longer than the lease period, the lease is guar-
anteed to expire on the primary before it does on the sec-
ondary. A secondary proposes configuration changes to try
to assume the role of primary if and only if its lease to the
old primary expires. Therefore, it is guaranteed that the old
primary has resigned before the new primary is established;
hence Primary Invariant holds.

We use the lease mechanism as the failure detection mech-
anism. A similar failure detection mechanism is used in
other systems, such as GFS [10], Boxwood, and Bigtable/Chubby

3

[5]. A key difference in these systems is that leases are
obtained from a centralized entity. In our case, the mon-
itoring traffic for failure detection is always between two
servers that already need to communicate with each other for
data processing: the primary communicates with the secon-
daries when processing updates; the beacons and acknowl-
edgments are also between the primary and the secondaries.
This way, failure detection accurately captures the status of
the communication channels needed for replication. Also,
the data-processing messages can themselves serve as bea-
cons and acknowledgments when the communication chan-
nel is busy. Actual beacons and acknowledgments are sent
only when the communication channel is idle, thereby mini-
mizing the overhead of failure detection. Furthermore, such
a decentralized implementation eliminates loads and depen-
dencies on a centralized entity. The load could be signifi-
cant because beacons and acknowledgements are exchanged
periodically between the centralized entity and every server
in the system; the interval has to be reasonably small to al-
low fast failure detection. In the centralized solution, the
unavailability of the centralized entity (e.g., due to network
partition) could render the entire system unavailable because
all primaries have to resign when losing leases from the cen-
tral entity.

2.4 Reconfiguration, Reconciliation, and Re-
covery

The complexity of a replication protocol lies in how it
handles reconfigurations. We divide reconfigurations into
three types: removal of secondaries, removal of the primary,
and addition of secondaries.

Removal of Secondaries. Removal of one or more sec-
ondaries is triggered when the primary suspects failures on
a subset of the secondaries. The primary proposes a new
configuration that excludes those suspected secondaries and
continues without those secondaries after the configuration
manager approves the proposal.

Change of Primary. Removal of the primary is triggered
when a secondary suspects that the primary has failed using
the lease mechanism described previously. The secondary
proposes a new configuration with itself being the new pri-
mary and with the old primary excluded. When approved,
the secondary p considers itself the new primary and starts to
process new requests only after it completes a reconciliation
process. During reconciliation, p sends prepare messages
for uncommitted requests in its prepared list and have them
committed on the new configuration. Let sn be the serial
number corresponding to p’s committed point after reconcil-
iation, p then instructs all replicas to truncate their prepared
lists and keep only all requests up to serial number sn . An-
other reconfiguration can be triggered even during reconcil-
iation, if any replica in the new configuration fails.

Because a prepared list on a secondary always subsumes
all committed requests, by having all requests in a prepared
list committed, reconciliation ensures the following Recon-

Figure 1: Reconciliation: An Example. A was the pri-
mary in the old configuration. In the new configuration,
an old secondary B is promoted to be the new primary
with A removed from the configuration. The first line
shows the state of the prepared lists and the committed
lists of the replicas based on the highest serial numbers
on the lists. The second line shows the corresponding
state after reconciliation.

figuration Invariant.

Reconfiguration Invariant: If a new primary p completes
reconciliation at time t, any committed list that is maintained
by any replica in the replica group at any time before t is
guaranteed to be a prefix of committedp at time t. Commit
Invariant holds in the new configuration.

Reconfiguration Invariant extends Commit Invariant across
configurations. It also ensures that serial numbers assigned
to any committed requests will be preserved and never re-
assigned even with primary changes. In contrast, a request in
the uncommitted portion of a prepared list is not necessarily
preserved. For example, when the primary assigning that se-
rial number fails, a new primary could assign the same serial
number to a different request as long as the serial number has
not been assigned to a committed request. The secondaries
always choose the assignment that comes from the primary
with the highest configuration version.

Figure 1 illustrates how the prepared lists and the com-
mitted points change when the primary changes. Initially, A
was the primary with B, C, and D as secondaries. Note that
committedB is a prefix of committedA, which is a prefix
of the prepared list on any replica. Consider a reconfigura-
tion that has B replacing the failed A as the primary. After
B completes the reconciliation, the new committedB is the
same as the old preparedB , which subsumes committedA.
The preparedC is updated to preserve Commit Invariant. The
extra requests on preparedD are removed (or undone.)1

Addition of New Secondaries. New replicas can be added
to a replica group to restore the level of redundancies after
failures of replicas in the group. Commit Invariant must be
preserved when a new server is added to the configuration.

1In some cases, the truncation of preparedD can be done lazily
when D receives from the new primary B new requests with the
same serial numbers. Those requests will replace the existing ones.

4

This requires that the new replicas have the proper prepared
lists before joining the replica group.2 The process for a new
replica to acquire the right state is referred to as recovery.

A simple approach is to have the primary delay the pro-
cessing of any new updates until the new replicas copy the
prepared list from any existing replica. This tends to be dis-
ruptive in practice. Alternatively, a new replica joins as a
candidate secondary. The primary continues to process up-
dates and sends prepare messages to the candidate secon-
daries as well. The primary terminates the candidacy of a
new replica if the primary fails to get an acknowledgement
from that replica.

Besides recording the new updates in the prepare mes-
sages from the primary, a candidate secondary c also fetches
the portion of the prepared list it does not yet have from any
existing replica. When c finally catches up, it asks the pri-
mary to add c to the configuration. As long as the candi-
dacy of c is not yet terminated, the primary will contact the
configuration manager to add c into the configuration as a
secondary. Upon approval, the primary considers c as a sec-
ondary.

State transfer to a new replica during recovery could be
costly. A full state transfer is unavoidable for a replica that
has never been in the replica group. There are cases where
a replica was removed from a replica group due to false sus-
picion, network partition, or other transient failures. When
such an outdated replica rejoins the group, it is ideal to have
the new replica perform catch-up recovery [26], which only
fetches the missing updates that have been processed when
the replica was out of the group. Due to Reconfiguration In-
variant, an old replica’s committed list is guaranteed to be
a prefix of the current committed list and the current pre-
pared list. However, the prepared list on the old replica is not
guaranteed to be a prefix of the current prepared list if any
primary change has occurred after the old replica departed
the group. Therefore, an old replica can only preserve its
prepared list up to the committed point in catch-up recovery
and must fetch the rest.

2.5 Correctness
The protocol we have described in this section achieves

strong consistency if at any time there exists at least one
non-faulty replica in the current configuration defined by the
configuration manager. We leave the full description of the
replication protocol and a formal proof of its correctness to
a separate technical report. Here we provide an informal
argument of correctness for Linearizability, Durability, and
Progress.

Linearizability: The system execution is equivalent to a lin-
earized execution of all processed requests.
Durability: If a client receives an acknowledgment from
the system for an update, the update has been included in

2In practice, the joining server copies the current committed state,
as well as the part of the prepared list that has not been committed.

the equivalent linearized execution.
Progress: Assuming that communication links between non-
faulty servers are reliable, that the configuration manager
eventually responds to reconfiguration requests, and that even-
tually there are no failures and no reconfigurations in the sys-
tem, the system will return a response to each client request.

For Linearizability, observe that the committed list on the
primary defines a linearized execution of all updates. Pri-
mary Invariant defines a series of primaries for a replica
group, each is in action in a non-overlapping period of time.
Even with primary changes, due to Reconfiguration Invari-
ant, the committed list on any previous primary is guaran-
teed to be a prefix of the committed list on the new primary.
To add queries to the linearized execution, observe that a
primary processes each query on the state represented by a
committed list; the query is naturally added after all com-
mitted updates in that committed list and after all previously
completed queries. Again, because of Primary Invariant, at
any time, a single primary is processing all queries. The ad-
dition of queries preserves a linearized execution. It is easy
to see that the linearized execution satisfies the real-time or-
dering required by linearizability.

For Durability, if a client receives an acknowledgement
for an update, the primary sending the acknowledgement
must have inserted the request to its committed list and hence
in the equivalent linearized execution.

For Progress, assuming that the configuration manager
eventually returns responses for each reconfiguration request
(Paxos does so under reasonable timing assumptions), the
replica group eventually reconfigures to a configuration with
only the non-faulty replicas. At this point, all requests will
be processed and acknowledged according to the data repli-
cation protocol.

2.6 Implementations
In practice, replicas do not maintain the prepared lists and

committed points as described in the abstract model. How
they are best implemented depends on the semantics of the
data (or the application state) being replicated. Based on the
replication protocol, the implementation must support three
types of actions efficiently.

• Query processing: Process queries on the state corre-
sponding to the committed list.

• State transfer during reconciliation: Make the prepared
list on the replicas identical to the new primary. Some
uncommitted entries in the prepared list on a secondary
might be removed as a result of the state transfer.

• State transfer during recovery: Transfer the needed por-
tion of the prepared list from a replica to a joining
server. Some uncommitted entries in the prepared list
on the joining server might be removed as a result of
the state transfer.

5

A natural way to allow efficient processing of queries is
to apply the committed requests in the serial-number order
to the application state. Prepared requests that are not yet
committed might need to be maintained separately: these
requests are not applied directly on the application state be-
cause they might need to be undone during state transfer: in
general, undoing an operation is tricky and might require a
separate undo log.

For reconciliation, a new primary simply sends all pre-
pared and uncommitted requests; they are easy to identify
because they are maintained separately from the applica-
tion state. To expedite catch-up recovery, the replicas can
also maintain in memory or on disk the recently commit-
ted updates. Alternatively, they can mark the segments of
the state modified by those recently committed updates via
dirty-region logging.

In this design, to have an update committed, a secondary
has to record the update in the prepared list first and then
applies the update to the application state when it learns that
the request is committed. This normally involves two disk
writes for each committed request.

One optimization is to batch the updates to the application
state by applying them first to an in-memory image of the
state and writing the new image to the disk periodically. The
separate prepared list keeps not only prepared requests that
are not yet committed, but also the committed requests that
are not yet reflected on the on-disk application state. The
latter is needed to recover the committed updates when the
in-memory state is lost due to a power outage.

Design for an Append-Only Application State. In the
case where the system maintains an append-only application
state, where a later update appends to the old state, rather
than overwriting it, the prepared list can be maintained di-
rectly on the append-only application state. This is because
undoing an update on the append-only state is straightfor-
ward.

In this design, when receiving a request from the primary,
a secondary applies requests directly to the application state
in the serial order, effectively using the application state for
maintaining its prepared list. The primary still waits for ac-
knowledgments from all secondaries before committing the
request, effectively using the application state as its commit-
ted list . A secondary maintains the committed points lazily
when getting the piggybacked information on the committed
point from the primary.

For reconciliation, when a new primary p starts, each sec-
ondary s ensures that the portion of the state after the com-
mitted point is the same as the portion of the state on p. For
recovery, a returning replica simply copies everything start-
ing from its committed point from the current primary.

2.7 Discussions
In this subsection, we discuss some design details of the

framework and explore alternative design choices.
Availability and Performance of the configuration man-

ager. Having the centralized configuration manager simpli-
fies system management because it is a central point that
maintains the current truth about the configuration of all replica
groups in the system. More significantly, the separation also
simplifies the data replication protocol and allows the toler-
ance of n− 1 failures in a replica group of size n.

For high availability, the configuration manager itself is
implemented using the replicated state-machine approach with
the standard Paxos protocol. The service is usually deployed
on a small number (say 5 or 7) of fixed servers and can toler-
ate the unavailability of less than half of the servers. Unlike
a centralized lock service, the unavailability of the config-
uration manager does not affect normal-case operations of
other servers.

The configuration manager is unlikely to become a per-
formance bottleneck. The configuration manager is not in-
volved in normal-case request processing, but only when
replica groups reconfigure. Normally, Paxos processes a
command within a single round of communication, with each
member server commits the changes to the local disks. Fur-
ther measures can be taken to reduce the load on the configu-
ration manager. Normally, every request to the configuration
manager (even for reads) requires the execution of the con-
sensus protocol. In our case, however, any member of the
configuration manager is free to reject outdated configura-
tion change request based on its locally stored configuration
version because the up-to-date configuration has at least the
same version or higher.

Durability during Transient Replica-Group Failure. In
the previous sections, we show that the replication protocol
is able to tolerate n − 1 failures in a replica group of size
n. In practice, there are situations, such as during power
failure, when all servers in the replica group fail. In such
cases, the replica group will not be able to make progress
until some of the replicas in the group come back online. If
all replicas in the most recent configuration fail permanently,
then data loss ensues. If at least one of the replica in the
most recent configuration comes back online, our replication
protocol allows the system to resume with no data loss, as
long as the configuration manager also recovers from power
failure. For the configuration manager implemented with the
Paxos protocol, the manager can recover if a majority of the
servers of the configuration manager recover and if all Paxos
states are maintained on persistent storage.

To achieve durability against transient failure of an entire
replica group, all replicas maintain their prepared lists and
committed points on persistent storage. When a replica re-
covers from failure, it contacts the configuration manager to
see whether it remains a replica in the current configuration.
If so, it will assume its current role: if it is a primary, it will
try to re-obtain leases from the secondaries; if it is a sec-
ondary, it will respond to beacons from the current primary.
The server initiates reconfiguration when detecting failures.

Primary/Backup vs. Paxos. An alternative to the use of
the primary/backup paradigm is to adopt the Paxos paradigm.

6

In Paxos, a request is committed only after it is prepared on
a quorum (usually a majority) of replicas. This is true even
for query requests, although the same leasing mechanism in
our protocol can be used to allow query on a single replica
that holds a lease from a quorum.

In the primary/backup paradigm, an update request is com-
mitted only after it is prepared on all replicas, rather than on
a majority as in Paxos. The different choices of quorums in
the two protocols have several implications.

First, Paxos is not sensitive to transient performance prob-
lems related to a minority of replicas: it is able to commit
requests on the fastest majority; others can catch up in the
background. Similarly, the failure of a minority of replicas
has minimal performance impact.

In contrast, in our primary/backup protocol, the slowness
of any replica causes the protocol to slow down. The failure
of any replica stalls the progress until the reconfiguration re-
moves that replica from the replica group. The timeout value
for leases must be set appropriately: a high value translates
into higher disruption time during replica failure, whereas
a low value leads to possible false suspicion that removes a
non-faulty slow replica from the replica group. False suspi-
cion reduces the resilience of the system; our protocol facil-
itates fast catch-up recovery for a replica to rejoin quickly,
thereby reducing the window of vulnerability.

Second, Paxos is unable to process any request when a
majority of the replicas becomes unavailable. In our pro-
tocol, however, the replica group can reconfigure, with the
help of the configuration manager, and continues to operate
as long as at least one replica is available .

Third, reconfiguration in our protocol is simple with the
help of the separate configuration manager. With Paxos, a
replica group can reconfigure itself by treating a reconfigu-
ration as a consensus decision in the current configuration.
A new replica must contact a majority in the current config-
uration to transfer the state properly.

It is debatable which choice offers the better tradeoffs in
practice. We choose the primary/backup paradigm mainly
for its simplicity. Most of the experience and results we re-
port remain valid even if the Paxos paradigm were adopted.

Weakening Strong Consistency. Strong consistency es-
sentially imposes two requirements. First, all replicas must
be executing the same set of updates in the same order. Sec-
ond, a query returns the up-to-date state. There might be
benefits in relaxing strong consistency. Relaxing the first re-
quirement leads to state diversions among replicas, which
often require the system to detect and recover to a consistent
state and also require clients to cope with inconsistencies.
Examples of such systems include Coda [16], Sprite [3],
Bayou [27], CONIT [30], and PRACTI [4] and GFS.

We instead discuss the relaxation of the second; that is,
we allow a query to return a somewhat outdated state. This
has two interesting implications. First, the replication pro-
tocol achieves this weakened semantics without relying on
the leasing mechanism: note that the Primary Invariant is

In-Memory

Structure

Checkpoint

L

O

G

Checkpoint

On-Disk Image

Update

3Checkpointing

4

Truncate

Memory

Disk

New

On-Disk

Image
5

Merge

Query

1

2

Figure 2: A Log-Based Storage System Architecture.

the only invariant that relies on the timing assumption in the
leasing mechanism. Without this invariant, an old primary
could mistakenly think it is still the primary and process
queries on the outdated state. However, the existence of two
concurrent primaries would not lead to conflicting states on
different replicas. This is because our reconfiguration proto-
col dictates that a new primary be a replica in the previous
configuration. Given that an update is committed only after
the consent from all replicas in a configuration, as long as
the new primary ceases to act as a secondary in the old con-
figuration, updates can no longer be committed after the new
primary gets approved by the configuration manager. There-
fore, no divergence in states can happen even during primary
changes.

The second implication is that secondaries can also pro-
cess queries. Due to Commit Invariant and Reconfigura-
tion Invariant, the committed list on a secondary represents
a valid, but outdated, state.

3. REPLICATION FOR DISTRIBUTED LOG-
BASED STORAGE SYSTEMS

We explore the practical aspects of the proposed replica-
tion framework through log-based distributed storage sys-
tems.

Figure 2 shows a general architecture for a (non-replicated)
log-based storage system. The system maintains the on-disk
image for application data and also an in-memory data struc-
ture that captures the updates to the on-disk image. For per-
sistency, the system also keeps an application log for the
updates that are maintained only in memory.

When the system receives an update, it writes the request
to the log for persistency (step 1) and applies the request
to the in-memory data structure (step 2). The log is re-
played to reconstruct the in-memory state when the server
reboots. Periodically (before the in-memory data structure
uses up the memory), a checkpoint on the disk is created
(step 3) for the in-memory data structure. After the check-
point is created, all log entries for updates that have been
reflected in the on-disk checkpoint can be truncated from
the log (step 4). The system can choose to store one or more
checkpoints. Periodically, updates reflected in the check-
points are merged with the on-disk image to create the new

7

on-disk image (step 5). A system can choose to merge with-
out checkpointing: the updates reflected in the in-memory
data structure are merged directly with the on-disk image.
We choose the more-general form because it covers the spe-
cial case nicely, because it accurately reflects the working of
some practical real systems such as Bigtable, and because
the maintenance of checkpoints can speed up reconciliation
in some cases. Queries are served using the in-memory data
structure, the on-disk checkpoints, and the on-disk image. It
is worth pointing out that such a log-based design eliminates
random disk writes and transforms them into more-efficient
sequential disk writes.

3.1 Logical Replication
In the first replication strategy, replication is simply ap-

plied to the entire system state: each replica supports the
same interface as the original non-replicated system and is
capable of processing the same type of updates and queries.
It is logical because the states on the replicas are logically
the same. Replicas might maintain different physical states;
a replica can decide unilaterally when to checkpoint and
when to merge.

For logical replication, because the application state is not
append-only, we choose to maintain the prepared list sepa-
rately from the application state. Importantly, we can elim-
inate the cost of writing an update to the prepared list by
maintaining a log that serves both as the application log and
as the store for the prepared requests. To do so, we aug-
ment an application log entry containing the client request
with three fields: the configuration version, the serial num-
ber, and the last committed serial number. A log entry sub-
sumes any other entry that has the same serial number and
a lower configuration version; this happens when a prepared
request is undone during primary change. The application
log therefore consists of all non-subsumed log entries with a
committed serial number, while the log entries that are un-
committed belong to the prepared list.

In the first phase, when receiving a prepare message con-
taining the request, the configuration version, the serial num-
ber, and the last committed serial number, a replica appends
the message to the log. In the second phase, when a request
is committed, it is applied to the in-memory data structure,
but there is no need for the application to write the log any
more: the request is already in the log.3

The application truncates its log after checkpointing. But
only log entries corresponding to committed and checkpointed
updates are truncated. Our replication protocol needs only
the committed suffix of the prepared list. All those entries
are indeed preserved during truncation.

Each checkpoint reflects updates in a range of serial num-
bers; the range is associated with the checkpoint. We also
3On a primary, although a committed request is immediately ap-
plied to the in-memory data structure, the last committed serial
number is updated lazily on the log. This does not affect correct-
ness because our protocol ensures that any request in the prepared
lists of all replicas will not be lost.

associate with the on-disk image the last serial number it
reflects. Those associated serial numbers can help decide
which piece of state is needed during catch-up recovery.

A Variation of Logical Replication. Processing updates
on the in-memory data structure, generating checkpoints,
and merging all consume resources, such as CPU cycles and
memory, and could potentially be expensive. In logical repli-
cation, these operations are done both on the primary and
redundantly on the secondaries.

It might be preferable to have only the primary perform
those operations. The results of those operations can then be
replicated on all replicas. We therefore introduce a variation
of the logical replication scheme, referred to as logical-V. In
logical-V, Only the primary maintains the in-memory state.
A secondary, when receiving an update from the primary,
simply appends the request to the log, as in logical replica-
tion, without applying the request to an in-memory state. A
secondary does fetch the checkpoints from the primary as
they are generated. A log entry on a secondary can be dis-
carded only when the update corresponding to the entry is
either discarded or committed and reflected in a local check-
point.

Logical-V represents an interesting tradeoff from logical
replication. In logical-V, secondaries consume much less
memory (since they no longer maintain the in-memory struc-
ture) and less CPU (since they no longer generate the check-
points, which involves compression.) However, logical-V
does incur higher network load because checkpoints are now
transferred among replicas. More importantly, primary fail-
over in logical-V is more time-consuming: to become a new
primary, a secondary must replay the log to reconstruct the
in-memory state and to generate the needed checkpoints.

3.2 Layered Replication
The persistent state in a log-based system consists of check-

points, on-disk images, and logs. They can all be imple-
mented as files. A log-based storage system can then be
thought as consisting of two layers, where the lower layer
provides persistent file storage, and the upper layer trans-
lates the application logic into operations on files.

The view of layering leads to an alternative design that
applies replication to the two layers separately. At the lower
layer, a simple append-only file abstraction suffices to sup-
port operations such as appending a new log entry and creat-
ing a new checkpoint. Therefore, we can use the design for
append-only state outlined in Section 2.6 for file replication.

Having a lower-layer file replication is attractive also be-
cause the abstraction is reusable and simplifies the logic at
upper layers. RAID is a classic example for such a design.
More recent distributed storage systems, such as Frangipani
on Petal, Boxwood on RLDev, and Bigtable on GFS, all use
a layered approach and have the main replication logic at the
lower layer.

At the upper layer, for each piece of data, some owner
server is responsible for accepting client requests on the data,

8

maintains the in-memory structure, and writes (appends) to
the files at the lower layer for persistency and reliability. For
example, to write a log entry, the upper layer simply request
the lower layer to append the entry to a log file. The upper
layer is not concerned about where the log is maintained,
whether it is replicated, or how it is replicated. The lower
layer does not know or care about the semantics of the files
being operated on, whether the file is a log or a checkpoint.

Lower-layer replication does not completely eliminate the
need for fault tolerance at the upper layer: when an owner
server fails, a new owner server must take over its responsi-
bility. In previous systems, a separate distributed lock ser-
vice is used to ensure that a unique owner server is elected at
the upper layer for each piece of data. An important obser-
vation we make is that, instead of inventing and deploying a
new mechanism, the same replication logic can be reused at
the upper layer for electing a unique owner to accept and
process client requests: the problem of electing a unique
owner is the same as the configuration management part of
our replication framework that achieves Primary Invariant.

A natural design is to choose as the owner server the pri-
mary of the replica group that manages the data at the lower
layer. There are two main advantages. First, we get a “free”
fail-over mechanism at the upper layer from the replication
protocol at the lower layer, without a distributed lock service
and without incurring any extra overhead. When the owner
server fails, a new primary will be elected at the lower layer
and will be the new owner server. Second, this arrangement
ensures that a copy of the data always resides on the owner
server, thereby reducing network traffic.

3.3 Log Merging
The system usually maintains multiple replica groups. As

advocated by GFS and Chain Replication [29], a server par-
ticipates in a set of different replica groups in order to spread
the recovery load when the server fails. Given that there
is logically a log associated with each replica group, each
server would have to maintain multiple such logs. The bene-
fit of using logging could diminish because writing multiple
logs cause the disk head to seek regularly.

One solution is to merge multiple logs to a single phys-
ical log, as done in Bigtable. The choice of how replica-
tion is done influences how logs are merged. For logical
and logical-V, the log entries are explicitly sent to secon-
daries. Each server can then place log entries in a single
local physical log. The resulting local physical log contains
log entries for all replica groups that the server belongs to,
whether the server is a primary or a secondary for the group.
In this scheme, there is exactly one local physical log for
each server in the system.

For layered replication, a server writes the log entries for
all data it owns as a primary to a single replicated log at the
lower layer. This effectively merges the logs for all replica
groups in which the server is a primary, but not the logs for
replica groups in which the server is a secondary.

With n servers in the system, each is a primary for some
replica group, in the layered scheme there will be n repli-
cated logs. If each log is replicated k times, there will be
kn individual local logs in the system. This is in contrast
to the n local logs in the logical and logical-V cases. In
the layered scheme, there is no guarantee that the log entries
needed for a new primary during fail-over are local. This is
because log entries for different replica groups are merged
into one log. Those different replica groups usually have
their secondaries on different servers to enable parallel re-
covery. Therefore, the secondary copies of the log cannot
be co-located with all those secondaries. On the contrary,
in the logical-V case, during fail-over all log entries needed
are guaranteed to be local, but each server must parse the
merged log file to find the necessary log entries that pertain
to the new primary replicas. For logical replication, a replica
replays its local log to reconstruct the in-memory state when
the replica restarts from a power loss, but a new primary
does not need to replay its local log during fail-over because
it maintains the in-memory state.

4. EVALUATIONS
To evaluate the replication framework and assess how well

it works for a practical log-based distributed storage system,
we have implemented PacificA, a prototype log-based stor-
age system. Only features that are relevant to replication are
described here. PacificA implements a distributed storage
system for storing a large number of records. Each record
has a unique key; a total order is defined for all keys. The
records are split into slices with each slice consisting of all
records in a continuous key range. PacificA provides an in-
terface for clients to scan the records in a given key range,
look up the record for a particular key, add a new record with
a particular key, or modify/delete an existing record.

The PacificA design follows the architecture depicted in
Figure 2 and adopts various features in Bigtable. In the on-
disk image of a slice, records in the slice are stored con-
tinuously in the sorted order of their keys. An index struc-
ture and a Bloom filter are maintained for fast lookups. All
modifications are logged and reflected in the in-memory data
structure. The in-memory data structure is also sorted based
on the keys. When the in-memory data structure grows to
a certain size, the information in the data structure is com-
pressed and written to the persistent storage in the same
sorted order. The sorted order allows a simple merge sort
when merging the checkpoints with the on-disk image. To
reduce the amount of data written to the disks, ZLib (com-
pression level 1) is used to compress the data in the check-
points and the on-disk images.

We have fully implemented three different strategies for
replication: logical replication, logical-V replication, and
layered replication. Due to the use of the same replication
framework, a significant portion of the code base is common
for different strategies.

The evaluation is done on a cluster of 28 machines con-

9

nected through a 48-port 1GB Ethernet switch. Sixteen of
those machines are used as PacificA servers; others are used
as client machines. The 16 server machines each has a 2.0
GHz Intel Xeon Dual-Core CPU, 4096 MB of memory, a
1Gb Ethernet card, and a 232 GB SATA hard drive. In our
experiments, we have the configuration manager run non-
replicated on a separate machine. We set the lease period to
be 10 seconds and the grace period to be 15 seconds.

Because queries are served by the primary only, the eval-
uation of the replication schemes focus mostly on perfor-
mance with updates. To generate a workload with updates,
a client randomly generates a 26-byte key and a record of
32 KB with a compression ratio of around 65%. The size and
the compression ratio mimics a set of 100 GB crawled web
pages we have. We have experimented with the the work-
load that inserts the real web-page data with the URLs as
keys and found comparable results. The synthetic workload
allows clients to generate the load efficiently (without load-
ing the web pages from the disk and uncompressing the data
first) in order to saturate the servers. For all experiments that
reports update throughput, we always have enough clients
with enough threads sending randomly-generated updates to
saturate the servers. Group commit is implemented in all
schemes and turned on by default. The default number of
replicas for a replica group is 3.

4.1 Normal-Case Performance
In the first experiment, a client sends updates on a single

slice stored on a replica group of three servers. No merge op-
erations are performed in this experiment and group commit
is disabled. Table 1 shows the client-observed throughput,
along with the internal costs of replication on the replicas in
terms of CPU utilization, disk throughput, and network uti-
lization, for all three replication schemes. For comparison,
the client throughput for the non-replicated setting is 23.7
MB/s, which is about 10% higher than that of logical-V due
to lack of replication cost. We show resource consumption
on both the primary and a secondary. The reported numbers
are averages over a period of 10 minutes.

The resource consumptions on two secondaries actually
differ. This is mainly because our implementation uses a
chained structure for a primary to send requests to secon-
daries, as done in GFS: the primary sends the data to the
first secondary, which will then pipeline the data further to
the next secondary. This structure reduces the overhead on
the primary for sending data and utilize the network band-
width in a more balanced way. In such an implementation,
the first secondary in the chain will have to forward the data
to the next secondary, incurring more overhead than that of
the next secondary. The differences are not significant. The
numbers reported are for the first secondary.

For all three schemes, both disk and CPU are close to sat-
uration. Logical-V has slightly higher throughput, which
leads to higher CPU utilization, network throughput, and
disk throughput. Layered seems to suffer slightly because

����������������������� ��	
�� �� ������	 ���� � �� �� ������ ��� !�"� #$%&#� '(&)'�*�+ $,#��! %&#� '(&)'�*�+ $ -!�. %&#�'(&)'�
���/�0�1������/�0�1� � /� 1� �� �� ��� �/� �1� ��� 234��3�5677	898:�	84 ; <=> ?<@> AB>CD@E F

Figure 3: Impact of Checkpointing and Merging, logical
replication.

it has to pass the log entries to a lower layer for transmission,
disrupting the request processing pipelining. The client-observed
throughput is lower than the disk throughput on the repli-
cas because each record is not only written to the log, but
also compressed and written to the checkpoint. Logical-V
and layered replication have lower CPU utilizations on the
secondaries because the secondaries do not maintain the in-
memory structure or perform checkpointing. The network
throughput is higher for these two schemes because they
need to ship checkpoints to secondaries.

A Temporal View. In the second experiment, we investi-
gate the temporal fluctuation that is inherent in a log-based
system due to checkpointing and merging. Figure 3 shows
the CPU utilization, network throughput, and disk read/write
throughput, all on a primary, over time for logical replica-
tion.

The two elevations in disk read throughput (seconds 30
and 135) mark the start of merge operations that read check-
points and the on-disk image. Merge also introduces com-
peting disk writes to log writes. The result is much slower
log writes and client-request processing. This translates to
lower CPU utilization (due to fewer requests to process),
lower network throughput, and lower disk write throughput
(even with an extra source of write requests.) The first merge
ends at second 115, at which point the system is able to pro-
cess more client requests, reflected by a large spike in CPU
utilization, network throughput, the disk write throughput,
all due to client-request processing.

Checkpointing occurs regularly, starting from second 10,
even during the merge operations. When performing check-
pointing, CPU utilization goes up due to compression. Check-
pointing also writes to the disk, competing with log writes.
This slows down log writes and client-request processing.
The result is lower disk throughput and network through-
put. Each small fluctuation therefore corresponds to a check-
pointing action.

The graphs for logical-V and layered replication are sim-
ilar and thus omitted. The only noticeable difference is that
the network throughput is higher in these two schemes dur-
ing checkpointing because checkpoints are shipped to the

10

Replication Total Primary Replica Secondary Replica
Scheme Throughput (MB/s) CPU (%) Network (MB/s) Disk (MB/s) CPU (%) Network (MB/s) Disk (MB/s)

Logical 20.3 81.6 41.5 27.5 75.2 41.0 27.2
Logical-V 21.4 94.4 60.4 28.9 31.4 51.7 28.9
Layered 19.2 83.0 53.2 25.6 22.3 46.2 25.6

Table 1:

� ��������������������������	�
�� ��� ��� ��� ��������� ��� �� ��������� ��� ����������� ���������!����!��������� � � " !� !#$�
�� 	� %&'() *+, - ./0) -) *1) *-
Figure 4: Scalability.

secondaries.
Scalability. In the final experiment for the normal cases,

we investigate the scalability of the system. We fix the num-
ber of slices assigned to each server to 40 and use a random
replica placement strategy that provides a balanced alloca-
tion of slices and primary/secondary roles to the servers. We
then measure the aggregated client throughput, in terms of
number of (32KB) records per second, with different num-
bers of servers in the system. Figure 4 shows the near-perfect
scalability for all those schemes. Because logical replica-
tion utilizes extra resources on the secondaries, its overall
throughput becomes lower in this end-to-end experiments
with multiple replica groups. Layered replication is lower
because there are three logs on each server in that scheme
and because it is observed to be more sensitive to load im-
balance: an overloaded server seems to impact more servers
in layered replication.

We further measure the scalability of queries on random
keys. Each server is a primary for one slice with about
3GB data, organized in around 56 checkpoints. We turn
off our own cache, but not the file system cache or the disk
cache. We report query throughput at a steady state. Because
queries are processed by the primaries only, with the same
data placement, all three replication schemes yield the same
result. We therefore report only one series of numbers. Due
to data co-location, each query request is processed locally,
which leads to near-perfect scaling.

4.2 Performance during Failure, Reconcilia-
tion, and Recovery

In this subsection, we report the evaluation results during
failure, reconciliation, and recovery. The first experiment

���������������������
���	
�����	
�������������

� ��� ��� ��� ��� ��� ��� ���
����������������� � !" # $"%&"'($)*+�����

Figure 5: Performance During Failure, Reconciliation,
and Recovery.

uses a single replica group on three servers that stores a sin-
gle slice. Figure 5 shows the changes to the client-perceived
throughput (in terms of number of records per second) in
face of the following series of events. At second 60, the pri-
mary is killed; the server recovers and rejoins at second 160;
the same server, now a secondary, is again killed at second
410; and it recovers and rejoins again at second 490.

Figure 5 shows the results for logical replication and logical-
V replication over time. Layered replication behaves al-
most identically with logical-V despite differences in log
handling, so only logical-V curve is presented. (The next
experiment distinguishes logical-V and layered replication.)

At second 60, the primary is killed. The lease expires
within 15 seconds, at which time a secondary proposes a
new configuration to remove the faulty primary. Reconcil-
iation in logical replication is much faster since the secon-
daries already maintain the in-memory data structure. This
translates into shorter downtime. For logical-V replication,
the new secondary must load the log and play the log in or-
der to reconstruct the in-memory data structure before it can
accept new requests.

At second 160, the failed server recovers and rejoins. The
resource consumption due to the catch-up recovery for the
new replica leads to lower client-perceived throughput. When
the recovery is completed at second 300, the replica group is
restored to 3 servers. When the server, as a secondary, is
killed at second 410, it takes 10 seconds before the primary
reconfigures to remove the faulty secondary. But no recon-
ciliation is needed. We therefore see smaller disruptions. A
similar drop in the throughput is observed due to catch-up
recovery when the server recovers and rejoins.

11

����������� ��	
�� � ���� ������ ��� ������ ��� �
������� �� ��� ��� ����� �� !
"�#$� � % &'()* +), -./0

Figure 6: Fail-over Time vs. Log Size

There are fluctuations at the points of reconfigurations
(e.g., when adding a new secondary at seconds 350 and 650),
especially for logical replication. This is because requests
are buffered when the primary contacts the configuration
manager for reconfiguration. Those buffered requests are
processed in batch when reconfiguration is approved. Due
to lack of precise control of the timing of the events, the two
graphs are not perfectly aligned.

Fail-Over Time. In the next experiment, we look at fail-
over time for different schemes. In the layered replication,
fail-over happens at two layers: in the lower layer, prepared,
but not yet committed, requests are re-sent. This is rela-
tively fast because those requests are in memory. Fail-over
at the upper layer involves fetching and playing the log to
reconstruct the in-memory data structure. The latter is more
expensive and depends on the size of the log that needs to be
replayed.

In Logical-V, fail-over also involves log processing on the
new primary, but the processing logic differs from that of
the layered replication. The difference is more evident when
there are multiple slices on each server. We quantify the fail-
over time with respect to the size of the log using a three-
server three-slice configuration, where each server is a pri-
mary for a slice and the other two as secondaries. We then
kill one server; another server then becomes the primary for
the slice originally assigned to the failed server. We measure
the fail-over time with different log sizes.

Figure 6 shows the results for three schemes. Logical
replication performs the best because the new primary does
not have to replay the log in order to reconstruct the in-
memory data structure. Logical-V replays the log locally:
its local log is about three times as long as the log for the
slice to be recovered due to log merging. For layered repli-
cation, a designated server loads the log entries and sends
them to the new primary. This leads to remote disk reads,
which are in general unavoidable: the failed server is usu-
ally a primary for multiple slices; a designated server needs
to process the log and send the relevant log entries to differ-
ent new primaries. But because the log contains only the log
entries for the slice to be recovered, the total number of bytes
read in layered replication is only 1/3 of that in logical-V.

�����������������������������	
� �� ��� � �� ��� ��� ���� ���
������������������������

� � �� �� �� �����	�� ���� � �� !�" #��"$% &
Figure 7: Global Impact of Failures and Recovery.

Yet, layered is still inferior in this experiment due to remote
read.

The comparison between logical-V and layered replica-
tion is not as straightforward as the results indicate. For
logical-V, if each server is a primary for n slices, the log on
each server contains entries of 3n slices on average. A new
primary has to read the entire log in order to fetch a small
portion of useful log entries. We maintain an in-memory
map to locate log entries for each slice, thereby avoiding
reading the entire log. When a server fails, there could be
up to n servers replaying their local log. For layered replica-
tion, only a single log is parsed and the relevant log entries
sent to the appropriate new primaries. It reads less data from
the disk overall, but could incur higher delay because one
server has to process the entire log.

Global Impact of Failure and Recovery. To quantify
the impact of failures in a real setting, we also investigate
the system performance in a 16-machine cluster when two
servers are killed. Figure 7 shows the changes in through-
put (in terms of number of records per second) over time.
In this experiment, two servers are killed at around minute
five. For layered replication, the reconciliation lasts 5 min-
utes and ends at minute 10. We wait until all reconciliation
completes before instructing replica groups that lose replicas
to add random servers in order to restore the level of redun-
dancies. This process leads to even lower throughput and
finishes at minute 24. The system then returns to a normal
state with throughput that is slightly lower than that before
the failure, because only 14 servers are left. Logical repli-
cation finishes reconciliation almost instantly and finishes
recovery at around minute 8: the recovery is faster because
fewer data have been inserted into the system at this point.
The curve for logical-V is similar to that of logical replica-
tion. This was somewhat surprising. The in-memory map
for locating log entries for a slice on the merged log signif-
icantly reduces the amount of data the new primaries read
in logical-V. Also, the global reconciliation is executed in
parallel on all servers and completes promptly. This is in
contrast to the case for layered replication, where two 2 GB
logs need to be parsed.

Summary: Overall, we have shown that the replication

12

framework does yield practical replication schemes that of-
fer good performance both during normal operations and
during failure and recovery, as well as good scalability. Among
the three schemes we evaluate, the logical replication is clearly
superior during fail-over. This is at the expense of extra CPU
and memory resources, which leads to inferior normal-case
performance, especially in a workload that exercises CPU
and memory fully. Layered replication is more complicated
due to its special treatment of the log and the extra mecha-
nism to process the log during fail-over. The complexity also
seems to translate into slightly worse performance. Logical-
V is simpler and offers reasonable overall performance.

5. RELATED WORK
Replication protocols have been extensively studied in the

form of consensus protocols and the replicated state-machine
approach. Representative protocols include Paxos [18] and
view-stamped replication [22].

There is also a long history of distributed systems that im-
plement replication for high reliability and availability. It
is hard to enumerate them all. We instead focus on a small
subset of the solutions that are closest to ours.

HARP [20] was among the first to build a highly-available
file system on commodity hardware. It adopts primary/backup
for replication with a write-ahead log. HARP’s log is main-
tained entirely in-memory and is replicated on all secon-
daries before the requests are committed. HARP does not
need to maintain an on-disk log because it assumes that each
server is equipped with UPS. HARP uses the view-stamped
replication protocol [22]. Each replica group consists of
2n + 1 servers with n + 1 servers storing the data. Other
n servers are witnesses and participate during reconfigura-
tions (i.e., view changes) only.

Like HARP, Echo [26] also uses primary/backup with the
help of witnesses. Echo looks at the different sematic levels
for replication, although all the choices are at a level of file
system and lower. A log is used for journaling and the solu-
tion is similar to logical-V replication in PacificA, although
Echo does not consider log merging. Echo’s design takes
into account reconciliation and recovery. Echo also uses the
lease mechanism both for clients and for replicas.

Petal [19] implements distributed virtual disks that are
highly available. Petal was the first to use Paxos for imple-
menting a global state manager. Data replication employs
mirroring. The configuration of each replica group is main-
tained in the global state manager. For reconciliation and
recovery, the scheme uses busy bits to track in-flight opera-
tions and uses stale bits to track data regions that have been
updated by only one replica. Boxwood [21] uses a simi-
lar technique for implementing a low-level replicated logi-
cal device. Unlike Petal, which implements the global state
manager on all servers, Boxwood uses a small set of servers.
Both systems support mirroring only.

Frangipani [28] is a distributed file system layered on top
of Petal. Frangipani uses metadata logging for clean fail-

ure recovery and for better performance. The logs are main-
tained in Petal, as in our layered replication, although no log
merging is considered. A distributed lock service is used
to coordinate accesses to the Petal storage. The distributed
lock service itself uses the global state manager implement-
ing Paxos. A similar lock-server based design is used in
Boxwood to layer a high-level B-Link tree abstraction on
top of lower-layer reliable storage. In both cases, different
layers are not coordinated for co-location. The workload is
expected to exhibit locality with very little conflicting re-
quests to make caching effective.

Google File System (GFS) [10] is a distributed file system
designed specifically for the workload at Google, where files
are large and mainly append-only. GFS uses a log-based ap-
proach for maintaining meta data on a master; the master
is replicated in a variation of primary/backup scheme. For
data replication (at the chunkservers), GFS adopts a relaxed
consistency model, where replicas might have inconsistent
states when failures happen. The relaxed consistency model
allows the replication protocol not to deal with reconfigura-
tion and reconciliations explicitly. This choice simplifies the
replication protocol, but at the cost of increased complexity
for clients to deal with inconsistencies.

Bigtable [7] is a distributed structured store layered on
top of GFS. PacificA design is significantly influenced by
Bigtable, but with significant differences as well. The per-
sistent state of Bigtable is stored in GFS; this includes both
the logs and the SSTables (which correspond to the check-
points and the on-disk image in Figure 2). At the upper layer,
Bigtable uses the Chubby lock service [5] to keep track of
the managers (or tablet servers), where a manager must ob-
tain an exclusive lock in order to operate on the relevant state
on GFS. Co-location between Bigtable’s tablet masters and
their tablet data can be done only with best effort. Yet the
layered design was a sensible engineering choice given that
GFS was already available when Bigtable was built.

Chain replication [29] organizes the replicas in a replica
group into a chain. Updates are sent to the head of the
chain and processed along the chain until they are commit-
ted at the tail. The tail responds to both queries and up-
dates. Chain replication also uses Paxos to implement a
configuration manager. Chain replication can be regarded
as a variation of our replication framework. Consider the
tail as the primary in our framework, the chain replication
presents another way of achieving Reconfiguration Invari-
ant and Commit Invariant. Chain replication assumes no
network partition, but can use the same lease mechanism
to achieve Primary Invariant even during network partition.
Each replica can simply maintain a lease from its predeces-
sor on the chain.

At the cost of increased latencies, chain replication bene-
fits by splitting the query and update load between the head
and the tail. However, the benefit diminishes when servers
participate in multiple replica groups with different roles.
For layered replication, because the owner server does the

13

extra work of maintaining the in-memory data structure and
performing checkpointing/merging, using chain replication
at a lower layer does not help offload the overhead from
the owner server. Although a direct and fair comparison be-
tween our experimental results and Chain Replication’s sim-
ulation results is hard, based on our experience, we believe
that chain replication offers comparable throughput to our
primary/backup counterpart, if not worse.

Unlike previous proposals that use primary/backup, Fed-
erated Array of Bricks (FAB) [9] exemplifies an alternative
quorum-based approach. FAB implements a reliable and
scalable distributed disk array using new majority voting
based schemes that allow reconfiguration. The reconfigura-
tion is done through a dynamic voting scheme that resembles
that of Paxos and requires state synchronization.

Many peer-to-peer storage systems, such as CFS [8] and
PAST [25], also employ replication for reliability. Most of
such systems store immutable data, which greatly simpli-
fies the replication logic. Systems such as Oceanstore [17]
and FARSITE [1] do allow mutations to data. Due to possi-
ble malicious attacks in an untrusted P2P environment, both
systems use Byzantine fault tolerance protocols (e.g., [6].)

6. CONCLUDING REMARKS
Replication schemes are an important building block for

distributed systems and play a significant role in the per-
formance and reliability of those systems. This paper of-
fers a simple and clean way of thinking about replication
and its correctness in the context of a general replication
framework. At the same time, we show how to cross the
bridge from provably correct schemes to practical replica-
tion schemes. Our experiences bring new insights on repli-
cation for log-based storage systems and on how the way
replication handles failures influences system behavior.

7. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer.
FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proc. of OSDI 2002, pages
1–14, December 2002.

[2] P. Alsberg and J. Day. A principle for resilient sharing of distributed
resources. In Proc. of the 2nd International Conference on Software
Engineering, pages 627–644, October 1976.

[3] M. Baker and J. K. Ousterhout. Availability in the Sprite distributed
file system. Operating System Review, 25(2):95–98, April 1991.

[4] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication. In Proc. of 3rd
NSDI, May 2006.

[5] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In Proc. of the Seventh Symposium on
Operating System Design and Implementation (OSDI 2006),
November 2006.

[6] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
Proc. of the 3rd OSDI, February 1999.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. In Proc. of the 7th
OSDI, November 2006.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. of the 18th SOSP,
pages 202–215, 2001.

[9] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB:
Building reliable enterprise storage systems on the cheap. In Proc.
11th ASPLOS, October 2004.

[10] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google file system.
In Proc. of the 19th SOSP, October, 2003.

[11] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proc. 12th
Symp. Operating Systems Principles (SOSP), pages 202–210,
December 1989.

[12] J. Gray. Notes on data base operating systems. Operating Systems:
An Advanced Course, Lecture Notes in Computer Science, 60:393–
481, 1978.

[13] R. Hagmann. Reimplementing the Cedar file system using logging
and group commit. In Proc. of 11th SOSP, pages 155–162, 1987.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[15] M. Kazar, B. Leverett, O. Anderson, V. Apostolides, B. Buttos,
S. Chutani, C. Everhart, W. Mason, S. Tu, and E. Zayas. Decorum
file system architectural overview. In Proc. of the USENIX
Summer’90 Conference, pages 151–163, 1990.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. In Proc. of the 13th SOSP, pages 213–225, 1991.

[17] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-scale
persistent storage. In Proc. of 9th ASPLOS, pages 190–201,
November 2000.

[18] L. Lamport. The part-time parliament. ACM Trans. on Computer
Systems, 16(2):133–169, May 1998.

[19] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In
Proc. 7th ASPLOS, pages 84–92, October 1996.

[20] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and
M. Williams. Replication in the Harp file system. In Proc. of 13th
SOSP, pages 226–238, 1991.

[21] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In Proc. of the 6th OSDI, pages 105–120, December
2004.

[22] B. M. Oki and B. H. Liskov. Viewstamped replication: a new
primary copy method to support highly-available distributed
systems. In Proc. of 7th PODC, pages 8–17, 1988.

[23] C. H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM, 26(4):631–653, October 1979.

[24] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans. on
Computer Systems, 10(1):26–52, 1992.

[25] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. In Proc.
of the 18th SOSP, pages 188–201, 2001.

[26] G. Swart, A. Birrell, A. Hisgen, and T. Mann. Availability in the
Echo file system. Research Report 112, System Research Center,
Digital Equipment Corporation, September 1993.

[27] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In Proc. of the 15th
SOSP, pages 172–183, December 1995.

[28] C. A. Thekkath, T. P. Mann, and E. K. Lee. Frangipani: A scalable
distributed file system. In Proc. 16th Symp. Operating Systems
Principles (SOSP), pages 224–237, October 1997.

[29] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proc. of the 6th
OSDI, pages 91–104, 2004.

[30] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM Trans.
Comput. Syst., 20(3):239–182, 2002.

14

