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1 I n t r o d u c t i o n  

Informally, a sa f e t y  p r o p e r t y  stipulates that "bad 
things" do not happen during execution of a pro- 
gram and a l iveness  p r o p e r t y  stipulates that "good 
things" do happen (eventually) (Lamport 1977). 
Distinguishing between safety and liveness proper- 
ties is useful because proving that a program sat- 
isfies a safety property involves an invariance argu- 
ment while proving that a program satisfies a live- 
ness property involves a well-foundedness argu- 
ment. Thus, knowing whether a property is safety 
or liveness helps when deciding how to prove that 
the property holds. 

The relationship between safety properties and 
invariance arguments and between liveness proper- 
ties and well-foundedness arguments has, until 
now, not been formalized or proved. Rather, it was 
supported by practical experience in reasoning 
about concurrent and distributed programs in light 
of the informal definitions of safety and liveness 
given above. This paper substantiates that experi- 
ence by formalizing safety and liveness in a way 
that permits the relationship between safety and 
invariance and between liveness and well-founded- 
hess to be demonstrated for a large class of proper- 
ties. In so doing, we give new characterizations of 
safety and liveness and prove that they satisfy the 
formal definitions in Alpern and Schneider (1985 a). 



118 B. Alpern and F.B. Schneider: Recognizing safety and liveness 

We also give a method for decomposing properties 
into safety and liveness properties whose conjunc- 
tion is the original. 

We proceed as follows. Section 2 describes an 
automata-theoretic approach for specifying prop- 
erties. Section 3 contains automata-theoretic char- 
acterizations of safety and liveness. Section 4 shows 
how a property can be expressed as the conjunction 
of a safety property and a liveness property. Section 
5 discusses the relationship between safety and live- 
ness and proof techniques. Section 6 discusses re- 
lated work and Sect. 7 summarizes our contribu- 
tions. 

2 Histories and properties 
A program zc is assumed to be specified in terms 
of 

�9 its set of atomic actions d~, and 

�9 a predicate Init~ that describes its possible initial 
states. 

An execution of n can be viewed as an infinite 
sequence a of program states 

tT-~- SoS 1 ..., 

which we call a history. State So satisfies Init=, and 
each following state results from executing a single 
enabled atomic action from d .  in the preceding 
state. For a terminating execution, an infinite se- 
quence is obtained by repeating the final state. This 
corresponds to the view that a terminating execu- 
tion is the same as non-terminating execution in 
which after some finite time - once the program 
has terminated - the state remains fixed. 

A property is a set of infinite sequences of pro- 
gram states. We write tr ~ P to denote that (infinite 
sequence) tr is in property P. A program satisfies 
a property P if for each of its histories h, h ~ P .  

A property is usually specified by a characteris- 
tic predicate on sequences rather than by enumera- 
tion. Formulas of temporal logic can be interpreted 
as predicates on infinite sequences of states, and 
various formulations of temporal logic have been 
used for specifying properties (Lamport 1983; Lich- 
tenstein etal .  1985; Manna and Pnueli 1981; 
Wolper 1983). However, for our purposes, it will 
be convenient to specify properties using Buchi au- 
tomata - finite-state automata that accept infinite 
sequences (Vardi 1987). Mechanical procedures ex- 
ist to translate linear-time and branching-time first- 
order temporal formulas into Buchi automata (A1- 
pern 1986; Clarke et al. 1986; Wolper 1984), so using 
Buchi automata does not constitute a restriction. 

~ - 4 ) o n e  ~ Done ̂Post 

one ̂ Post~__J 

~ PreA Done ̂Post 
u true 

Fig. 1. mzc 

In fact, Buchi automata are more expressive than 
most temporal logic specification languages - there 
exist properties that can be specified using Buchi 
automata but cannot be specified in (standard) 
temporal logics (Wolper 1983). 

A Buchi automaton (Eilenberg 1974) m accepts 
the sequences of program states that are in L(m), 
the property it specifies. Figure 1 is a Buchi au- 
tomaton mtc that accepts (i) all infinite sequences 
in which the first state satisfies a predicate ~ P r e  
and (ii) all infinite sequences consisting of a state 
satisfying Pre, followed by a (possibly empty) se- 
quence of states satisfying --1 Done, followed by an 
infinite sequence of states satisfying Done A Post. 
Thus, mtc specifies Total Correctness with precondi- 
tion Pre and postcondition Post, where Done holds 
if and only if the program has terminated. 

Buchi automaton m~r contains four automaton 
states, labeled qo, ql, q2, and q3. The start state 
(qo) is denoted by an arc with no origin and accept- 
ing s t a t e s  (q2 and q3) by concentric circles. An infi- 
nite sequence is accepted by a Buchi automaton 
if and only if it causes the recognizer to be infinitely 
often in accepting states. 

Arcs between automaton states are labeled by 
program-state predicates called transition predi- 
cates. These define transitions between automaton 
states based on the next symbol read from the in- 
put. For example, because there is an arc labeled 
--7 Pre from qo to q2 in mtc, whenever mt~ is in qo 
and the next symbol read is a program state satisfy- 
ing --1 Pre, then a transition to q2 is made. If the 
next symbol read by a Buchi automaton satisfies 
no transition predicate on an arc emanating from 
the current automaton state, the input is rejected; 
in this case, we say the transition is undefined for 
that symbol. This is used in mt~ to ensure that an 
infinite sequence that starts with a state satisfying 
Pre ends in an infinite sequence of states that satisfy 
Done/x Post - once m~ enters q3, every subsequent 
program state read must satisfy Done/x Post or an 
undefined transition occurs. 

We say that a Buchi automaton is reduced if 
from every state there is a path to an accepting 
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state. Thus, mtc is an example of a reduced Buchi 
automaton. Given an arbitrary Buchi automaton, 
an equivalent reduced Buchi automaton can al- 
ways be obtained by deleting every state from 
which no accepting state is reachable. 

When there is more than one start state or more 
than one transition is possible from some automa- 
ton state for some input symbol, the automaton 
is non-deterministic; otherwise it is deterministic. 
Thus, mtc is deterministic because it has a single 
start state and because disjoint transition predi- 
cates label the arcs that emanate from each au- 
tomaton state. Although any set of finite sequences 
recognizable by a non-deterministic (ordinary) fi- 
nite-state automaton can be recognized by some 
deterministic (ordinary) finite-state automaton 
(Hopcroft and Ullman 1979), Buchi automata do 
not enjoy this equivalence. Some sets of infinite 
sequences can be recognized by non-deterministic 
Buchi automata but by not deterministic one (Ei- 
lenberg 1974). For  example, consider m,,o,o of 
Fig. 2, which accepts all sequences with an infinite 
suffix of program states that satisfy p.1 No deter- 
ministic Buchi automaton accepts this set of se- 
quences. The standard subset construction for 
transforming a non-deterministic (ordinary) finite- 
state automaton to a deterministic one does not 
work when it is applied to mmono--mde~ of Fig. 3 
results, and no combination of qo and q(o, 1~ as ac- 
cepting state causes meet to accept the same set 
of sequences as ramona. 

Formally, a Buchi automaton m for a property 
of a program rc is a five-tuple (S, Q, Qo, Q~, 6), 
where 

S is the set of program states of n, 

Q is the set of automaton states of m, 

Qo - Q is the set of start states of m, 

Q oo c Q is the set of accepting states of m, 

J~(Q x S) ~ 2 Q is the transition function ofm. 

Transition predicates are derived from 6 as follows. 
T~j, the transition predicate associated with the arc 
from automaton state q~ to q j, is the predicate that 
holds for all program states s such that qj~6(q~, 
s). Thus, T~j is false if no symbol can cause a transi- 
tion from q~ to qj. 

In linear-time temporal logic, this property is characterized 
by o[:]P 

~ P  Fig. 3. mde~ 

- ,P  

In order to formalize when m accepts a se- 
quence, some notation is required. For any se- 
quence o- = sos I ..., 

~r[i] = si 

a [..i] =SoSx ...si 

a[i..q =sisi+l ... 
l al = the length of o- (co if a is infinite). 

Transition function 6 can be extended to handle 
finite sequences of program states in the usual way: 

6*(q, a)=/{q ' l  (3q ,i q e~*(q, a l - . . l a l -2] ) :  
[ q's6(q ,a[la[--1]))} if 0<l~l<o~. 

A run of m for an infinite sequence a is a sequence 
of automaton states that m could be in while read- 
ing a. Thus, for p to be a run for a, p [0]eQo,  
and (Vi:O<i<lal: p [ i ] e 6 ( p [ i - 1 ] ,  a[i--1])). Let 
F,,(o-) be the set of runs of m on o-. (This set has 
only one element if m is deterministic.) Define 
INF,,(a) to be the set of automaton states that ap- 
pear infinitely often in any element of F,,(a). Then, 
o- is accepted by m if and only if INFm(a) n Qo~ 4=0. 

E x a m p l e s  o f  proper t ies  

A Buchi automaton mpc that specifies Partial Cor- 
rectness is shown in Fig. 4. As in m~e (Fig. 1), Pre 
is a transition predicate that holds for states satisfy- 
ing the given precondition, Done holds for states 
in which the program has terminated, and Post 
holds for states satisfying the given postcondition. 
Thus, mpc accepts all sequences in which (i) the 
first state satisfies ---1Pre, as well as those (ii) con- 
sisting of a state satisfying Pre, followed by an infi- 
nite sequence of states satisfying --7 Done, and those 
(iii) consisting of a state satisfying Pre, followed 
by a (possibly empty) finite sequence of states sat- 

( 

~ - - , D o n e  ~ . ~  Done ̂  Post 

 one Done^P  
--~re Pre ̂Done ̂Post 

true 

Fig. 4. mpc 
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~ ~(CS o ̂  CS v) 

Fig. 5. m,..t~ 

_ ~-,Requesto~ ~ ~Served, 

Served, 

Fig. 6. m~t.,~ 

isfying ~Done,  followed by an infinite sequence 
of states satisfying Done A Post. 

A Buchi automaton mrautex for Mutual Exclu- 
sion of two processes is given in Fig. 5. We assume 
transition predicate CS4, (CS~) holds for any state 
in which process 4) (~P) is executing in its critical 
section. 

Starvation Freedom for a process using a mutu- 
al exclusion protocol is specified by mst,r~ of Fig. 6. 
Predicate Request4, characterizes the state of a pro- 
cess q~ whenever it attempts to enter its critical 
section, and ~b makes progress when its state sat- 
isfies the predicate Served.~, which holds whenever 
q~ enters its critical section. 

3 Safety and liveness 

Just as properties can be viewed in terms of pro- 
scribed "bad  things" and prescribed "good things", 
so can Buchi automata. When a "bad thing" 
("good thing") of the property occurs, we would 
expect a "bad  thing" ("good thing") to happen 
in the recognizer for that property. The "bad  
thing" for a Buchi automaton is attempting an un- 
defined transition, because if such a "bad thing" 
happens (in every run) while reading an input, the 
Buchi automaton will not accept that input. The 
"good thing" for a Buchi automaton is entering 
an accepting state infinitely often, because we re- 
quire this "good thing" to happen for an input 
to be accepted. Having isolated these "bad  things" 
and "good things", it is possible to give an automa- 
ta-theoretic characterization of safety and liveness. 

Since every Buchi automaton is equivalent to 
some reduced Buchi automaton, it suffices to con- 
sider only reduced Buchi automata. 

R e c o g n i z i n g  sa fe ty  

To give an automata-theoretic characterization of 
safety properties, we require the following formal 
definition of safety from Alpern and Schneider 
(1985a). Consider a property P that stipulates that 
some "bad thing" does not happen. If a "bad  
thing" happens in an infinite sequence a, then it 
must do so after some finite prefix and must be 
irremediable. Thus, if o- ~ P ,  there is some prefix 
of a (that includes the "bad  thing") for which no 

extension to an infinite sequence will satisfy P. Tak- 
ing the contrapositive of this, we get the formal 
definition of a safety property P: 

Safety: 

(Va: a~S'~ a ~  P 

<=~(V i: 0 <  i:(3 fl: fl~S'~ o- [.. i] f l~  P))), (3.1) 

where S is the set of program states, S* the set 
of finite sequence of states, S ~' the set of infinite 
sequences of states, and juxtaposition is used to 
denote catenation of sequences. 

For  a reduced Buchi automaton m, define its 
closure cl(m) to be the corresponding Buchi au- 
tomaton in which every state has been made into 
an accepting state. For  example, Safe(m,c) (Fig. 7) 
is the closure of mtc (Fig. 1) and m,,utex (Fig. 5) is 
its own closure. The closure of m can be used to 
determine whether the property specified by m is 
a safety property. This is because cl(m) accepts a 
safety property - it never rejects an input by failing 
to enter accepting states (lack of a "good thing"); 
it rejects only by attempting an undefined transi- 
tion (a "bad  thing"). Thus, if a Buchi automaton 
m does not specify a safety property then cl(m) ac- 
cepts a proper superset of the inputs accepted by 
m. Therefore, if m and cl(m) accept the same lan- 
guage then m recognizes a safety property. 

Theorem 1. A reduced Buchi automaton m specifies 
a safety property if and only if L(m) = L(cl(m)). 2 

Proof First, assume m specifies a safety property. 
Since el(m) is obtained from m by making all states 
accepting, every (infinite) sequence ~ accepted by 
m is also accepted by c l(m). Hence, L(m) ~_ L(c l(m)). 
To show L(cl(m))~_L(m), we first prove that if 

~ L(c l(m)) then 

(Vi: 0_< i:(3fl: tieS~ ct [..i3 fl6L(m))). (3.2) 

Let cteL(cl(m)). Choose any prefix ~[..i] and sup- 
pose cr [..i] puts m in state qi. Since m is reduced, 
qi precedes an accepting state. Thus, there exists 
a sequence of program states fl0 that takes m from 
qi to some accepting state qaa- Moreover, there 
also exists a sequence of program states fla that 
takes m from %1 to some accepting state q~2, 
a sequence of program states ]~2 that takes m 
from q,2 to some accepting state qa3, etc. Define 
fl=flo~lfl2 ... Since ~[..i]fl causes m to be in ac- 
cepting states infinitely often, a[. . i]  fl~L(m), so 
(3.2) is satisfied. Now, from (3.2) we can conclude 

2 See Sistla et al. 1985 for an algorithm to test whether the 
languages accepted by two Buchi automata are equal 
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c~eL(m) due to (3.1), because by assumpt ion L(m) 
is a safety property.  Thus, c~eL(cl(m))=*.o~eL(m), 
hence L(c l(m)) ~ L(m). 

Next,  assume L(m)=L(cl(m)). To show that m 
specifies a safety property,  we show that Def. (3.1) 
is satisfied. Trivially, 

aeL(m) 
~ ( V i :  0_< i:(3fl: fleSh~ a[..i] fleL(m))) 

since we can choose fl = a [i + 1..]. Thus, it suffices 
to prove 

a(~ L(m) 
=~--n (Vi: 0_<i:(3 fl: fleS~ a[..i7 fieL(m))). (3.3) 

Since L(m)= L(c l(m)), (3.3) is equivalent to 

a(~L(c l(m)) 
= ~ 0 i :  0<i : (Vf l :  fleSh': o- [..i] fl(EL(cl(m)))). 

Suppose ar Thus, cl(m) rejects o7 o- must  
be rejected by cl(m) because an undefined transi- 
tion is a t tempted since, by construction,  every state 
in cl(m) is accepting. Let this undefined transit ion 
occur  upon  reading o-[k]. Hence, 

(Vfi: fl~S'~: a[..k] fl•L(cl(m))) 

as required for m to specify a safety proper ty  ac- 
cording to Def. (3.1). [ ]  

For  example, according to Theorem 1, mpc (Fig. 4), 
m ~ x  (Fig. 5), and Safe(m,c) (Fig. 7) all specify safe- 
ty properties. 

Recogniz ing liveness 

To give an automata- theore t ic  characterizat ion of 
liveness properties, we require the following formal 
definition of liveness from Alpern and Schneider 
(1985a). The thing to observe abou t  a liveness 
proper ty  is that no partical execution is irremedi- 
able since if some partial execution were irremedi- 
able, then it would  be a " b a d  thing". We take this 
to be the defining characteristic of  liveness. Thus, 
P is a liveness proper ty  if and only if 

Liveness:(V~:~eS*:(~fl:fleS~:afl~P)). (3.4) 

The closure of  a Buchi a u t o m a t o n  can also be 
used to determine if m specifies a liveness property.  
This is because cl(m) can reject an input  only by 
at tempting an undefined transition - a " b a d  
thing". A liveness proper ty  never proscribes a " b a d  
thing", so if m specifies a liveness property,  cl(m) 
must  accept every input. 

Theorem 2. A reduced Buchi automaton m specifies 
a liveness property if and only if L(cl(m))= S '~. 

Proof First, assume m specifies a liveness property.  
According to Def. (3.4) of liveness, 

(V~: ~eS~ i: 0_< i:(gfl: flesh': e [.. i] fleL(m)))). 

Thus, m does not a t tempt  an undefined transit ion 
when reading an input ~. Since cl(m) has the same 
transition function as m, cl(m) does not  a t tempt  
an undefined transition when reading ~. Each of  
the states of  cl(m) is accepting, and thus cl(m) ac- 
cepts cc Hence,  (Vc~: aeS'~: ~eL(cl(m))), or equiva- 
lently L(c l(m))= S '~, as required. 

Next  assume L(cl(m))=S ~ Thus, c l(m), hence 
m, does not  a t tempt  an undefined transit ion when 
reading any input cc Therefore, m does not  a t tempt  
an undefined transition when reading a finite prefix 

[..i] of an input. Suppose ~ [. . i]  leaves m in au- 
tomat ion  state qi. Since m is reduced, there exists 
a path from qi to some accepting state q,1, from 
q,1 to some accepting state q,2, etc. Let flo be a 
sequence of program states that  takes m from q~ 
to qaa, let fla be a sequence of p rogram states that  
takes m from q~a to qa2, etc. Thus, (3fl: tieS'~ e[ . . i ]  
fie L(m)) since we can choose fl = flo ill--. Definition 
(3.4) of liveness therefore holds, so L(m) is a liveness 
property.  [ ]  

For  example, according to Theorem 2, mrnono 
(Fig. 2), msrarv (Fig. 6), and Live(rote) (Fig. 8) specify 
liveness properties. 

4 Partitioning into safety and liveness 
Given a Buchi au toma ton  m, it is not  difficult to 
construct  Buchi au tomata  Safe(m) and Live(m) 
such that Safe(m) specifies a safety property,  
Live(m) specifies a liveness property,  and the prop-  
erty specified by m is the intersection of those speci- 
fied by Safe(m) and Live(m). This proves that  every 
proper ty  specified by a Buchi a u t o m a t o n  is equiva- 
lent to the conjunct ion of a safety proper ty  and 
a liveness property,  each of which can be specified 
by a Buchi automaton.  

For  Safe(m), we use cl(m). 

Theorem 3. Safe (m) specifies a safety property. 

Proof By construction,  cl(cl(m))=cl(m). Hence,  
L(c l(c l(m))) = L(c l(m)), and the result follows from 
Theorem 1. []  

We will construct  Live(m) to be a Buchi au- 
tomaton  such that 
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L(Live(m)) = L(m) w (S ~~ L(c l(m))). (4.1) 

If m is deterministic then for Live(m) we use m 
augmented by an accepting trap state 3 qtrap" Tran- 
sition function t~Live(m ) is the transition function for 
m extended so that it causes every undefined transi- 
tion of m to put Live(m) in qtrap" 

If m is non-deterministic then for Live(m) we 
use use m x env (m) and take as accepting states any 
automation state in which m or env(m) is in an 
accepting state. Buchi automaton env(m) specifies 
S~ and is defined as follows. The states 
of env(m) include a trap state qt,~p and the sets 
of automaton states of m; qt,~p is the only accepting 
state of env(m). The transition function 6~(,,) is, 
for all sets q~ of the automaton states of m: 

( q t r ,  e i f  6r~ (qi, S) = 0 
benvtm) (qi, s) = ~6,~ (qi, s) otherwise 

Lemma. L(Live (m)) = L(m) w (S '~ - L(c l(m))). 

Proof  First, consider the case where m is determi- 
nistic. Assume oraL(Live(m)). Thus, Live(m) enters 
accepting states infinitely often when reading a. If 
all of these accepting states are also (accepting) 
states of m then m will accept a, hence ct~L(m). 
Otherwise, one of the accepting states is qt,ap. In 
this case, aq~L(cl(m)) because to enter qtrap, m 
makes an undefined transition. From 7q~L(cl(m)), 
we conclude ~ ~ (S '~ - L(c l(m))). 

Now assume a~L(m) w(S~'--L(cl(m))). If 
aeL(m) then, by construction, a~L(Live(m)). If 
ae(S'~ then o~r hence cl(m) 
attempts an undefined transition on input a. 
This means that m attempts an undefined transi- 
tion of input ~, so, by construction, Live(m) will 
make a transition to qt,ap and accept a. Hence, 
aeL(Live(m)). 

Next, consider the case where m is non-deter- 
ministic. By construction of the accepting states 
of Live(m), L(Live(m))=L(m)uL(env(m)). Since 
env(m) specifies S'~ the result fol- 
lows. [] 

We can now prove that Live(m) specifies a live- 
ness property. By construction, Live(m) never re- 
jects an input by attempting an undefined transi- 
tion (a "bad thing"). Because m is reduced and 
Live(m) accepts any input accepted by m, for each 
finite sequence of program states there is an infinite 
suffix that can be appended to obtain a sequence 
that will be accepted by Live(m) - the defining char- 
acteristic of liveness. 

3 A trap state is one that  has a transition to itself for all inputs 

Theorem 4. Live(m) specifies a liveness property. 

Proof. First, consider the case where m is determin- 
istic. By construction, Live(m) has no undefined 
transitions. Therefore L(cl(Live(m))) = S ~ and the 
result follows from Theorem 2. 

Next, consider the case where m is non-deter- 
ministic. Due to the construction of Live(m), 

L(c 1 (Live (m))) = L(c l (m)) u L(c l(env (m))). 

L(c l(env(m))) D L(env (m)), since c l(env(m)) differs 
from env (m) by having more states accepting. Sub- 
stituting, 

L(c l(Live(m))) ~_ L(c l(m)) w L(env(m)). 

Since, by construction, L(env(m))=S~ 
we get 

L(c l(Live (m))) ~ L (c l (m)) w (S ~' - L(c l (m))), 

or L(cl(Live(m)))~_S '~ Since L(cl(Live(m)))c_S ~, 
the result then follows from Theorem 2. [] 

Finally, we can prove 

Theorem 5. Given a reduced Buchi automaton m, 
L(m) = L(Safe (m)) c~ L(Live (m)). 

Proof. Substituting for L(Live(m)) according to (4.1) 
and for L(Safe(m)) according to Theorem 1, we get 

L(Live (m)) n L(Safe (m)) 

= (L(m) ~ (S '~ -- L(c/(m))) c~ L(c l(m)) 

= (L(m) n L(c l(m))) w ((S ~ - L(c l(m))) ~ L(c l(m))) 

= (L(m) ~ L(c l(m))) u 0 

=L(m) [] 

The construction of Theorem 5 is illustrated 
below for mtc of Fig. 1, which specifies Total Cor- 
rectness. Safe(mtc) is given in Fig. 7; Live(m,c) is 
given in Fig. 8. However, Live(m,c) can be simpli- 
fied by combining the three accepting states q2, 
q3, and q~ into a single accepting state. Combining 
these states results in an equivalent automaton he- 
cause once any of these accepting states is entered, 

~ ~Done ~ Done ̂ Post 
~ o n e "  q~ Done^Po~ 

--,Pre Pre ̂Done ̂Post 
r2~ true 

Fig. 7. Safe(mj 
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Pre ̂ D o n e ~  

Fig. 8. Live(m~) 

ost 

Pre ̂Done ̂Post 

•//"•---dgone 

- ~ P r e  -̂..,Done:" q~l Done 
~ true 

-a~re v Done 

Fig. 9. Live (rn~) simplified 

Live(mzc) will thereafter remain in accepting states. 
Once q2 or ql is entered, Live(rote) will remain in 
that state since each of those states has a transition 
to itself for all inputs. And, if accepting state q3 
is entered then either Live(rote) will forever remain 
in q3 because subsequent input symbols satisfy 
Done^Post  or some input symbol satisfying 
--7 (Done A Post) must have been read, causing a 
transition to (accepting state) q,, which has a transi- 
tion to itself for all inputs. The (equivalent) au- 
tomaton that results from combining the three ac- 
cepting states of Live(m,c ) is given in Fig. 9. 

Notice that L(Safe(mtc)) = L(mpc) because 
Safe(mtc) differs from mp~ only by having qo as an 
accepting state. Thus, we have shown that Partial 
Correctness (as specified by mpr of Fig. 4) is the 
safety component of Total Correctness. Also, ob- 
serve that the simplified Live(m,~) automaton 
(Fig. 9) specifies a property comprising sequences 
of program states in which either the first state 
satisfies --7 Pre or eventually there is a state satisfy- 
ing Done. Such a property might well be called 
Termination, since it requires the program to reach 
Done if started in a state satisfying Pre. Termina- 
tion is the liveness component of Total Correct- 
ness. We have therefore proved, by our construc- 
tion, that Total Correctness is the intersection of 
Partial Correctness and Termination. 

5 Proving deterministic safety 
and liveness properties 
Given a deterministic Buchi automaton specifica- 
tion of a property, it is possible to extract proof 

obligations that must be satisfied by any program 
for which that property holds. This forms the basis 
for an approach to program verification first pro- 
posed in Alpern and Schneider (1985 a) and Alpern 
(1986) 4 , and permits us to formalize the relation- 
ship of safety and liveness properties specified by 
deterministic Buchi automata to invariance and 
well-foundedness arguments. 

Let m be a deterministic property recognizer 
for property P. One can think of m as simulating 
- in an abstract way - any program that satisfies 
P. To show that a program rc satisfies m, we 
demonstrate a correspondence between m and re. 
We do this by defining a correspondence invariant 
Ci for each automaton state qi, where C~ is a 
predicate that holds on a program state s if there 
exists a history of 7r containing a program state 
s and m enters qi upon reading s. Thus, if m is 
ever in automaton state qi, the last program state 
it read must satisfy C~. Constraints satisfied by cor- 
respondence invariants are defined inductively, as 
follows. 

For  the base case, initially, m is in state qo and 
zr is in a state characterized by Init~. Suppose that 
upon reading So, the first program state of some 
history of 7r, m enters automaton state qi- Thus, 
So satisfies Init~ and To j, the transition predicate 
labeling the edge that connects qo and qj. There- 
fore, Cj must satisfy (Init, ^ Toj)=>C~; for any au- 
tomaton state qj entered upon reading the first 
symbol of any history of zt, we require 

Correspondence Basis: 
(V j:  qf i  Q : (Init~ ^ Toj)=r C~). (5.1) 

Next we must prove the induction step. Assume 
that if m enters automaton state qi upon reading 
program state sk in a history of zc and 0 _  k < K, 
then Sk satisfies Cv Consider the case when m reads 
SK. Suppose m is in state q~ and that upon reading 
program state s~, a transition is made to automa- 
ton state qj. By the induction hypothesis SK-1 sat- 
isfied Ci and s~ satisfies transition predicate T~. 
The appropriate correspondence invariant Cj will 
hold provided {C,} o~{T~j~Cj} is valid for any ~, 
an atomic action of ft. (If a is not enabled in SK- 1 
then the triple is trivially valid because an atomic 
action terminates only when started in a state in 
which it is enabled.) Generalizing to handle any 
atomic action and any automaton state that m 
might be in when s x is read, we require: 

4 The approach has since been extended to handle properties 
specified by non-deterministic automata (Manna and Pnueli 
1987; Alpern and Schneider 1987) 
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Correspondence Induction: 
For all ~: ~ d ~ :  

For  all i: q~Q: 
{c,} { A 

j:qjeQ 
(5.2) 

Thus, any collection of predicates satisfying (5.1) 
and (5.2) are correspondence invariants for m and 
7Z. 

In order to establish that rc satisfies P, we must 
show that every history of rc is accepted by m. There 
are two ways that m might fail to accept a history 
G o r ~ :  

(1) m attempts an undefined transition when read- 
ing o-. 

(2) m never enters an accepting state after some 
finite prefix of o-. 

Thus, in order to prove that every history of 
satisfies P, it suffices to show that (1) and (2) are 
impossible. 

Two obligations ensure that (1) is impossible. 
First, we must show that m can make some transi- 
tion from its start state upon reading the first pro- 
gram state in a history: 

Transition Basis: Init~=~ V Toj. (5.3) 
j:qj~Q 

Second, we must show that m can always make 
a transition upon reading subsequent states in a 
history. If m is in state qi then the program state 
just read by m satisfies a correspondence invariant 
Ci. To avoid an undefined transition, any atomic 
action ~ that is then executed must transform the 
program state so that one of the transition predi- 
cates T u emanating from q~ holds. This is guaran- 
teed by 

Transition Induction: For all ~: ~ d ~ :  
For all i: qz~Q: 

{c,} { V T,j}. 
j:qjeO 

(5.4) 

Finally, we derive conditions to ensure that m 
cannot reject a by failing to enter accepting states 
infinitely often (i.e., scenario (2) above). A set Q' 
of automaton states is strongly connected if and 
only if there is a sequence of transitions from any 
element of Q' to any other without involving an 
automaton state outside of Q'. A reject knot ~: is 
a maximal strongly connected subset of Q contain- 
ing no accepting states. To ensure that m does not 
reject a, we must prove that no run for a history 
of rc is restricted to automaton states in Q-Q~nf. 

We do this by constructing a variant function v~ 
for each reject knot x. 

A variant function v~(q, s) is a function from 
automaton and program states to some well- 
founded set. 5 For  simplicity, assume that this well- 
founded set is the Natural Numbers. We require 
that whenever v~(q, s )=0  for any automata state 
q and program state s, then q is not in ~c. 

Knot Exit: (Vi: qi~tr (vK(qi) = 0):=~--"1Ci). (5.5) 

And, to ensure that the variant function does reach 
0, we require that it be decreased by every atomic 
action in 7c that might be executed: 

Knot Variance: 
For all ~: ~ :  

For all qiex: 

{ Ci /x O < v,,(qi)= V} 
(5.6) 

{ A ((TijACi)=~v,~(qA<V)}" 
j:qjeK 

The six proof obligations - Correspondence 
Basis (5.1), Correspondence Induction (5.2), Transi- 
tion Basis (5.3), Transition Induction (5.4), Knot 
Exit (5.5), and Knot  Variance (5.6) - are of three 
basic forms. Correspondence Basis (5.1), Transition 
Basis (5.3), and Knot  Exit (5.5) involve proving that 
predicate logic formulas are valid. Correspondence 
Induction (5.2) and Transition Induction (5.4) in- 
volve proving invariance of assertions. And, Knot 
Variance (5.6) involves proving that certain events 
cause variant functions to be decreased. There is 
a relationship between safety and liveness proper- 
ties and these three forms of proof obligations. 

First, observe that by construction, Safe(m) 
cannot have reject knots. Thus, Knot  Exit (5.5) and 
Knot  Variance (5.6) are trivially satisfied, so prov- 
ing that a program satisfies Safe(m) never requires 
a variant function (or well-foundedness argument). 
The remaining proof  obligations for Safe (m) consti- 
tute an invariance argument. Moreover, if m speci- 
fies a safety property then L(m)= L(Safe(m)). Prov- 
ing than g satisfies Safe(m) is, therefore, sufficient 
in order to prove that zc satisfies m. Thus, safety 
properties specified by deterministic Buchi au- 
tomata can be proved using only invariance argu- 
ments. 

Second, recall from Theorem 2 that m specifies 
a liveness property if L(cl(m))=S% By construc- 
tion, if L(cl(m))=S ~' then it is not possible for m 
to attempt an undefined transition. Therefore, 
Transition Basis (5.3) and Transition Induction 

5 The program state argument is often left implicit 
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(5.4) are trivially satisfied when trying to prove that 
a program rc satisfies a liveness property. Automata  
specifying liveness properties can have reject knots, 
so Knot  Exit (5.5) and Knot  Variance (5.6) must 
be proved - a variant function of well-foundedness 
argument is therefore required in proving a liveness 
property. In addition, an invariance argument is 
required to satisfy (5.1) and (5.2). 

6 Related work 

The first formal definition of safety was given in 
Lamport  (1985). While that definition correctly 
captures the intuition for an important class of 
safety properties - those invariant under stuttering 
- it is inadequate for safety properties that are not 
invariant, under stuttering. The formal definition 
of safety used in this paper, which was first pro- 
posed in Alpern and Schneider (1985 a), is indepen- 
dent of stuttering; in Alpern et al. (1985) it is shown 
equivalent to Lamport 's  for properties that are in- 
variant under stuttering. The definition of liveness 
used in this paper also first appeared in Alpern 
and Schneider (1985a) along with a proof  that 
every property can be expressed as the conjunction 
of a safety property and a liveness property. That 
proof is based on a topological characterization 
of safety properties as closed sets and liveness prop- 
erties as dense sets. The automata-theoretic charac- 
terizations and proofs in this paper more closely 
parallel the informal definitions of safety and live- 
ness in terms of "bad  things" and "good things". 

In Sistla (1985), an attempt is made to charac- 
terize syntactically safety and liveness properties 
that are expressed in linear-time temporal logic. 
Deductive systems are given for safety and liveness 
formulas in a temporal logic with eventually (0), 
but without next (C)), or until. In addition, deduc- 
tive systems for full (propositional) temporal logic 
are given for a subset of the safety properties, called 
strong safety properties, and for a subset of the 
liveness propertics, called absolute liveness proper- 
ties. Finally, Sistla (1985) characterizes automata 
for safety properties as those whose states can be 
partitioned as "good"  and "bad"  such that no 
"bad"  state is ever entered on an accepted input. 6 
Sistla independently developed a method similar 
to ours for determining whether an automaton spe- 
cifies a liveness property Sistla (1986). In Sistla's 

6 Sistla proves this result for deterministic Muller automata.  
In general, such automata  are more powerful than deterministic 
Buchi automata.  However, a simple consequence of this au- 
tomata characterization of safety properties is that  any deter- 
ministic Muller automata  for a safety property is isomorphic 
to an equivalent deterministic Buchi automaton and vice versa 

method, the closure of the reduced automaton is 
treated as a automaton on finite strings. If this 
automaton accepts S* the original automaton spe- 
cifies a liveness property. Also Sistla (1986) gives 
a syntactic characterization of the temporal logic 
specification of strong safety properties that can 
be defined using Buchi automata. 

Another syntactic characterization of safety 
and liveness properties appears in Lichtenstein 
et al. (1985). The definition of safety given there 
coincides with ours; the definition of liveness classi- 
fies some properties as liveness that our definition 
does not. We do not classify p until q as liveness 
because the occurrence of--np before q constitutes 
a "bad  thing" and therefore p until q has elements 
of safety, but Lichtenstein et al. (1985) consider it 
liveness. Another difference is that the definitions 
in Lichtenstein et al. (1985) are based on existing 
temporal logic inference rules (proof obligations) 
whereas our definitions are not. Independence from 
inference rules makes our results about  the rela- 
tionship between types of properties and proof  
techniques all the more interesting. Also, in con- 
trast to the definitions in Lichtenstein et al. (1985), 
our characterizations of safety and liveness are in- 
dependent of the notation used to express the prop- 
erties and therefore apply to a large class of proper- 
ties. 

7 Conclusions 

This paper gives tests to determine whether a prop- 
erty specified by a (deterministic or nondeterminis- 
tic) Buchi automaton is safety or liveness. For  re- 
duced deterministic Buchi automata,  these tests are 
quite simple: such an automaton accepts a safety 
property if and only if each state is accepting (or 
could be made accepting without increasing the 
set of sequences accepted); such an automaton ac- 
cepts a liveness property if and only if it has a 
transition defined from each state for each input 
symbol. We also show how to extract automata 
Safe(m) and Live(m) from a Buchi automaton m, 
where Safe(m) specifies a safety property, Live(m) 
specifies a liveness property, and the property spe- 
cified by m is the intersection of the ones specified 
by Safe(m) and Live(m). The extraction is illustrated 
by proving that Total Correctness is the conjunc- 
tion of safety property Partial Correctness and live- 
ness property Termination. Finally, we prove that 
for properties specified by deterministic Buchi au- 
tomata, safety properties can be proved by use of 
an invariance argument while liveness properties 
also require a well-foundedness argument. 
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