
Distributed Computing (1987) 2:117-126

�9 Springer-Verlag 1987

Recognizing safety and liveness*
Bowen Alpern 1 and Fred B. Schneider 2
i IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
2 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

Bowen Alpern was born in 1952.
He received a Ph.D. in Computer
Science from Cornell University
in 1986. Currently, he is a Re-
search Staff Member in the
Mathematics Department of the
IBM T.J. Watson Research
Center.

the property. The characterizations permit a prop-
erty to be decomposed into a safety property and
a liveness property whose conjunction is the origi-
nal. The characterizations also give insight into
techniques required to prove a large class of safety
and liveness properties.

Fred B. Schneider is an asso-
ciate professor in the Computer
Science Department at Cornell
University. He received a Ph.D.
in Computer Science from
S.U.N.Y at Stony Brook in 1978
and a B.S. from Cornell in 1975.
Schneider is a member of the edi-
torial boards of Distributed
Computing and Information
Processing Letters. He is also a
member of the U.S. Army Com-
mittee on Recommendations for
Basic Research, the College
Board Committe for Advanced
Placement Computer Science,

IFIP Working Group 2.3 (Programming Methodology), and the
Standing Organizing Committee for Principles of Distributed
Computing Conferences. He has served on the program committee
for PODC, POPL, SOSP, and FTCS.

Abstract. A formal characterization for safety prop-
erties and liveness properties is given in terms of
the structure of the Buchi automaton that specifies

Offprint requests to: F.B. Schneider
* This work is supported, in part, by NSF Grant DCR-8320274
and Office of Naval Research contract N00014-86-K-0092

1 I n t r o d u c t i o n

Informally, a sa f e t y p r o p e r t y stipulates that "bad
things" do not happen during execution of a pro-
gram and a l iveness p r o p e r t y stipulates that "good
things" do happen (eventually) (Lamport 1977).
Distinguishing between safety and liveness proper-
ties is useful because proving that a program sat-
isfies a safety property involves an invariance argu-
ment while proving that a program satisfies a live-
ness property involves a well-foundedness argu-
ment. Thus, knowing whether a property is safety
or liveness helps when deciding how to prove that
the property holds.

The relationship between safety properties and
invariance arguments and between liveness proper-
ties and well-foundedness arguments has, until
now, not been formalized or proved. Rather, it was
supported by practical experience in reasoning
about concurrent and distributed programs in light
of the informal definitions of safety and liveness
given above. This paper substantiates that experi-
ence by formalizing safety and liveness in a way
that permits the relationship between safety and
invariance and between liveness and well-founded-
hess to be demonstrated for a large class of proper-
ties. In so doing, we give new characterizations of
safety and liveness and prove that they satisfy the
formal definitions in Alpern and Schneider (1985 a).

118 B. Alpern and F.B. Schneider: Recognizing safety and liveness

We also give a method for decomposing properties
into safety and liveness properties whose conjunc-
tion is the original.

We proceed as follows. Section 2 describes an
automata-theoretic approach for specifying prop-
erties. Section 3 contains automata-theoretic char-
acterizations of safety and liveness. Section 4 shows
how a property can be expressed as the conjunction
of a safety property and a liveness property. Section
5 discusses the relationship between safety and live-
ness and proof techniques. Section 6 discusses re-
lated work and Sect. 7 summarizes our contribu-
tions.

2 Histories and properties
A program zc is assumed to be specified in terms
of

�9 its set of atomic actions d~, and

�9 a predicate Init~ that describes its possible initial
states.

An execution of n can be viewed as an infinite
sequence a of program states

tT-~- SoS 1 ...,

which we call a history. State So satisfies Init=, and
each following state results from executing a single
enabled atomic action from d . in the preceding
state. For a terminating execution, an infinite se-
quence is obtained by repeating the final state. This
corresponds to the view that a terminating execu-
tion is the same as non-terminating execution in
which after some finite time - once the program
has terminated - the state remains fixed.

A property is a set of infinite sequences of pro-
gram states. We write tr ~ P to denote that (infinite
sequence) tr is in property P. A program satisfies
a property P if for each of its histories h, h ~ P .

A property is usually specified by a characteris-
tic predicate on sequences rather than by enumera-
tion. Formulas of temporal logic can be interpreted
as predicates on infinite sequences of states, and
various formulations of temporal logic have been
used for specifying properties (Lamport 1983; Lich-
tenstein etal . 1985; Manna and Pnueli 1981;
Wolper 1983). However, for our purposes, it will
be convenient to specify properties using Buchi au-
tomata - finite-state automata that accept infinite
sequences (Vardi 1987). Mechanical procedures ex-
ist to translate linear-time and branching-time first-
order temporal formulas into Buchi automata (A1-
pern 1986; Clarke et al. 1986; Wolper 1984), so using
Buchi automata does not constitute a restriction.

~ - 4) o n e ~ Done ̂Post

one ̂ Post~__J

~ PreA Done ̂Post
u true

Fig. 1. mzc

In fact, Buchi automata are more expressive than
most temporal logic specification languages - there
exist properties that can be specified using Buchi
automata but cannot be specified in (standard)
temporal logics (Wolper 1983).

A Buchi automaton (Eilenberg 1974) m accepts
the sequences of program states that are in L(m),
the property it specifies. Figure 1 is a Buchi au-
tomaton mtc that accepts (i) all infinite sequences
in which the first state satisfies a predicate ~ P r e
and (ii) all infinite sequences consisting of a state
satisfying Pre, followed by a (possibly empty) se-
quence of states satisfying --1 Done, followed by an
infinite sequence of states satisfying Done A Post.
Thus, mtc specifies Total Correctness with precondi-
tion Pre and postcondition Post, where Done holds
if and only if the program has terminated.

Buchi automaton m~r contains four automaton
states, labeled qo, ql, q2, and q3. The start state
(qo) is denoted by an arc with no origin and accept-
ing s t a t e s (q2 and q3) by concentric circles. An infi-
nite sequence is accepted by a Buchi automaton
if and only if it causes the recognizer to be infinitely
often in accepting states.

Arcs between automaton states are labeled by
program-state predicates called transition predi-
cates. These define transitions between automaton
states based on the next symbol read from the in-
put. For example, because there is an arc labeled
--7 Pre from qo to q2 in mtc, whenever mt~ is in qo
and the next symbol read is a program state satisfy-
ing --1 Pre, then a transition to q2 is made. If the
next symbol read by a Buchi automaton satisfies
no transition predicate on an arc emanating from
the current automaton state, the input is rejected;
in this case, we say the transition is undefined for
that symbol. This is used in mt~ to ensure that an
infinite sequence that starts with a state satisfying
Pre ends in an infinite sequence of states that satisfy
Done/x Post - once m~ enters q3, every subsequent
program state read must satisfy Done/x Post or an
undefined transition occurs.

We say that a Buchi automaton is reduced if
from every state there is a path to an accepting

B. Alpern and F.B. Schneider: Recognizing safety and liveness 119

state. Thus, mtc is an example of a reduced Buchi
automaton. Given an arbitrary Buchi automaton,
an equivalent reduced Buchi automaton can al-
ways be obtained by deleting every state from
which no accepting state is reachable.

When there is more than one start state or more
than one transition is possible from some automa-
ton state for some input symbol, the automaton
is non-deterministic; otherwise it is deterministic.
Thus, mtc is deterministic because it has a single
start state and because disjoint transition predi-
cates label the arcs that emanate from each au-
tomaton state. Although any set of finite sequences
recognizable by a non-deterministic (ordinary) fi-
nite-state automaton can be recognized by some
deterministic (ordinary) finite-state automaton
(Hopcroft and Ullman 1979), Buchi automata do
not enjoy this equivalence. Some sets of infinite
sequences can be recognized by non-deterministic
Buchi automata but by not deterministic one (Ei-
lenberg 1974). For example, consider m,,o,o of
Fig. 2, which accepts all sequences with an infinite
suffix of program states that satisfy p.1 No deter-
ministic Buchi automaton accepts this set of se-
quences. The standard subset construction for
transforming a non-deterministic (ordinary) finite-
state automaton to a deterministic one does not
work when it is applied to mmono--mde~ of Fig. 3
results, and no combination of qo and q(o, 1~ as ac-
cepting state causes meet to accept the same set
of sequences as ramona.

Formally, a Buchi automaton m for a property
of a program rc is a five-tuple (S, Q, Qo, Q~, 6),
where

S is the set of program states of n,

Q is the set of automaton states of m,

Qo - Q is the set of start states of m,

Q oo c Q is the set of accepting states of m,

J~(Q x S) ~ 2 Q is the transition function ofm.

Transition predicates are derived from 6 as follows.
T~j, the transition predicate associated with the arc
from automaton state q~ to q j, is the predicate that
holds for all program states s such that qj~6(q~,
s). Thus, T~j is false if no symbol can cause a transi-
tion from q~ to qj.

In linear-time temporal logic, this property is characterized
by o[:]P

~ P Fig. 3. mde~

- ,P

In order to formalize when m accepts a se-
quence, some notation is required. For any se-
quence o- = sos I ...,

~r[i] = si

a [..i] =SoSx ...si

a[i..q =sisi+l ...
l al = the length of o- (co if a is infinite).

Transition function 6 can be extended to handle
finite sequences of program states in the usual way:

6*(q, a)=/{q ' l (3q ,i q e~*(q, a l - . . l a l -2]) :
[q's6(q ,a[la[--1]))} if 0<l~l<o~.

A run of m for an infinite sequence a is a sequence
of automaton states that m could be in while read-
ing a. Thus, for p to be a run for a, p [0]eQo,
and (Vi:O<i<lal: p [i] e 6 (p [i - 1] , a[i--1])). Let
F,,(o-) be the set of runs of m on o-. (This set has
only one element if m is deterministic.) Define
INF,,(a) to be the set of automaton states that ap-
pear infinitely often in any element of F,,(a). Then,
o- is accepted by m if and only if INFm(a) n Qo~ 4=0.

E x a m p l e s o f proper t ies

A Buchi automaton mpc that specifies Partial Cor-
rectness is shown in Fig. 4. As in m~e (Fig. 1), Pre
is a transition predicate that holds for states satisfy-
ing the given precondition, Done holds for states
in which the program has terminated, and Post
holds for states satisfying the given postcondition.
Thus, mpc accepts all sequences in which (i) the
first state satisfies ---1Pre, as well as those (ii) con-
sisting of a state satisfying Pre, followed by an infi-
nite sequence of states satisfying --7 Done, and those
(iii) consisting of a state satisfying Pre, followed
by a (possibly empty) finite sequence of states sat-

(

~ - - , D o n e ~ . ~ Done ̂ Post

 one Done^P
--~re Pre ̂Done ̂Post

true

Fig. 4. mpc

120 B. Alpern and F.B. Schneider: Recognizing safety and liveness

~ ~(CS o ̂ CS v)

Fig. 5. m,..t~

_ ~-,Requesto~ ~ ~Served,

Served,

Fig. 6. m~t.,~

isfying ~Done, followed by an infinite sequence
of states satisfying Done A Post.

A Buchi automaton mrautex for Mutual Exclu-
sion of two processes is given in Fig. 5. We assume
transition predicate CS4, (CS~) holds for any state
in which process 4) (~P) is executing in its critical
section.

Starvation Freedom for a process using a mutu-
al exclusion protocol is specified by mst,r~ of Fig. 6.
Predicate Request4, characterizes the state of a pro-
cess q~ whenever it attempts to enter its critical
section, and ~b makes progress when its state sat-
isfies the predicate Served.~, which holds whenever
q~ enters its critical section.

3 Safety and liveness

Just as properties can be viewed in terms of pro-
scribed "bad things" and prescribed "good things",
so can Buchi automata. When a "bad thing"
("good thing") of the property occurs, we would
expect a "bad thing" ("good thing") to happen
in the recognizer for that property. The "bad
thing" for a Buchi automaton is attempting an un-
defined transition, because if such a "bad thing"
happens (in every run) while reading an input, the
Buchi automaton will not accept that input. The
"good thing" for a Buchi automaton is entering
an accepting state infinitely often, because we re-
quire this "good thing" to happen for an input
to be accepted. Having isolated these "bad things"
and "good things", it is possible to give an automa-
ta-theoretic characterization of safety and liveness.

Since every Buchi automaton is equivalent to
some reduced Buchi automaton, it suffices to con-
sider only reduced Buchi automata.

R e c o g n i z i n g sa fe ty

To give an automata-theoretic characterization of
safety properties, we require the following formal
definition of safety from Alpern and Schneider
(1985a). Consider a property P that stipulates that
some "bad thing" does not happen. If a "bad
thing" happens in an infinite sequence a, then it
must do so after some finite prefix and must be
irremediable. Thus, if o- ~ P , there is some prefix
of a (that includes the "bad thing") for which no

extension to an infinite sequence will satisfy P. Tak-
ing the contrapositive of this, we get the formal
definition of a safety property P:

Safety:

(Va: a~S'~ a ~ P

<=~(V i: 0 < i:(3 fl: fl~S'~ o- [.. i] f l~ P))), (3.1)

where S is the set of program states, S* the set
of finite sequence of states, S ~' the set of infinite
sequences of states, and juxtaposition is used to
denote catenation of sequences.

For a reduced Buchi automaton m, define its
closure cl(m) to be the corresponding Buchi au-
tomaton in which every state has been made into
an accepting state. For example, Safe(m,c) (Fig. 7)
is the closure of mtc (Fig. 1) and m,,utex (Fig. 5) is
its own closure. The closure of m can be used to
determine whether the property specified by m is
a safety property. This is because cl(m) accepts a
safety property - it never rejects an input by failing
to enter accepting states (lack of a "good thing");
it rejects only by attempting an undefined transi-
tion (a "bad thing"). Thus, if a Buchi automaton
m does not specify a safety property then cl(m) ac-
cepts a proper superset of the inputs accepted by
m. Therefore, if m and cl(m) accept the same lan-
guage then m recognizes a safety property.

Theorem 1. A reduced Buchi automaton m specifies
a safety property if and only if L(m) = L(cl(m)). 2

Proof First, assume m specifies a safety property.
Since el(m) is obtained from m by making all states
accepting, every (infinite) sequence ~ accepted by
m is also accepted by c l(m). Hence, L(m) ~_ L(c l(m)).
To show L(cl(m))~_L(m), we first prove that if

~ L(c l(m)) then

(Vi: 0_< i:(3fl: tieS~ ct [..i3 fl6L(m))). (3.2)

Let cteL(cl(m)). Choose any prefix ~[..i] and sup-
pose cr [..i] puts m in state qi. Since m is reduced,
qi precedes an accepting state. Thus, there exists
a sequence of program states fl0 that takes m from
qi to some accepting state qaa- Moreover, there
also exists a sequence of program states fla that
takes m from %1 to some accepting state q~2,
a sequence of program states]~2 that takes m
from q,2 to some accepting state qa3, etc. Define
fl=flo~lfl2 ... Since ~[..i]fl causes m to be in ac-
cepting states infinitely often, a[. . i] fl~L(m), so
(3.2) is satisfied. Now, from (3.2) we can conclude

2 See Sistla et al. 1985 for an algorithm to test whether the
languages accepted by two Buchi automata are equal

B. Alpern and F.B. Schneider: Recognizing safety and liveness 121

c~eL(m) due to (3.1), because by assumpt ion L(m)
is a safety property. Thus, c~eL(cl(m))=*.o~eL(m),
hence L(c l(m)) ~ L(m).

Next, assume L(m)=L(cl(m)). To show that m
specifies a safety property, we show that Def. (3.1)
is satisfied. Trivially,

aeL(m)
~ (V i : 0_< i:(3fl: fleSh~ a[..i] fleL(m)))

since we can choose fl = a [i + 1..]. Thus, it suffices
to prove

a(~ L(m)
=~--n (Vi: 0_<i:(3 fl: fleS~ a[..i7 fieL(m))). (3.3)

Since L(m)= L(c l(m)), (3.3) is equivalent to

a(~L(c l(m))
= ~ 0 i : 0<i : (Vf l : fleSh': o- [..i] fl(EL(cl(m)))).

Suppose ar Thus, cl(m) rejects o7 o- must
be rejected by cl(m) because an undefined transi-
tion is a t tempted since, by construction, every state
in cl(m) is accepting. Let this undefined transit ion
occur upon reading o-[k]. Hence,

(Vfi: fl~S'~: a[..k] fl•L(cl(m)))

as required for m to specify a safety proper ty ac-
cording to Def. (3.1). []

For example, according to Theorem 1, mpc (Fig. 4),
m ~ x (Fig. 5), and Safe(m,c) (Fig. 7) all specify safe-
ty properties.

Recogniz ing liveness

To give an automata- theore t ic characterizat ion of
liveness properties, we require the following formal
definition of liveness from Alpern and Schneider
(1985a). The thing to observe abou t a liveness
proper ty is that no partical execution is irremedi-
able since if some partial execution were irremedi-
able, then it would be a " b a d thing". We take this
to be the defining characteristic of liveness. Thus,
P is a liveness proper ty if and only if

Liveness:(V~:~eS*:(~fl:fleS~:afl~P)). (3.4)

The closure of a Buchi a u t o m a t o n can also be
used to determine if m specifies a liveness property.
This is because cl(m) can reject an input only by
at tempting an undefined transition - a " b a d
thing". A liveness proper ty never proscribes a " b a d
thing", so if m specifies a liveness property, cl(m)
must accept every input.

Theorem 2. A reduced Buchi automaton m specifies
a liveness property if and only if L(cl(m))= S '~.

Proof First, assume m specifies a liveness property.
According to Def. (3.4) of liveness,

(V~: ~eS~ i: 0_< i:(gfl: flesh': e [.. i] fleL(m)))).

Thus, m does not a t tempt an undefined transit ion
when reading an input ~. Since cl(m) has the same
transition function as m, cl(m) does not a t tempt
an undefined transition when reading ~. Each of
the states of cl(m) is accepting, and thus cl(m) ac-
cepts cc Hence, (Vc~: aeS'~: ~eL(cl(m))), or equiva-
lently L(c l(m))= S '~, as required.

Next assume L(cl(m))=S ~ Thus, c l(m), hence
m, does not a t tempt an undefined transit ion when
reading any input cc Therefore, m does not a t tempt
an undefined transition when reading a finite prefix

[..i] of an input. Suppose ~ [. . i] leaves m in au-
tomat ion state qi. Since m is reduced, there exists
a path from qi to some accepting state q,1, from
q,1 to some accepting state q,2, etc. Let flo be a
sequence of program states that takes m from q~
to qaa, let fla be a sequence of p rogram states that
takes m from q~a to qa2, etc. Thus, (3fl: tieS'~ e[. . i]
fie L(m)) since we can choose fl = flo ill--. Definition
(3.4) of liveness therefore holds, so L(m) is a liveness
property. []

For example, according to Theorem 2, mrnono
(Fig. 2), msrarv (Fig. 6), and Live(rote) (Fig. 8) specify
liveness properties.

4 Partitioning into safety and liveness
Given a Buchi au toma ton m, it is not difficult to
construct Buchi au tomata Safe(m) and Live(m)
such that Safe(m) specifies a safety property,
Live(m) specifies a liveness property, and the prop-
erty specified by m is the intersection of those speci-
fied by Safe(m) and Live(m). This proves that every
proper ty specified by a Buchi a u t o m a t o n is equiva-
lent to the conjunct ion of a safety proper ty and
a liveness property, each of which can be specified
by a Buchi automaton.

For Safe(m), we use cl(m).

Theorem 3. Safe (m) specifies a safety property.

Proof By construction, cl(cl(m))=cl(m). Hence,
L(c l(c l(m))) = L(c l(m)), and the result follows from
Theorem 1. []

We will construct Live(m) to be a Buchi au-
tomaton such that

122 B. Alpern and F.B. Schneider: Recognizing safety and liveness

L(Live(m)) = L(m) w (S ~~ L(c l(m))). (4.1)

If m is deterministic then for Live(m) we use m
augmented by an accepting trap state 3 qtrap" Tran-
sition function t~Live(m) is the transition function for
m extended so that it causes every undefined transi-
tion of m to put Live(m) in qtrap"

If m is non-deterministic then for Live(m) we
use use m x env (m) and take as accepting states any
automation state in which m or env(m) is in an
accepting state. Buchi automaton env(m) specifies
S~ and is defined as follows. The states
of env(m) include a trap state qt,~p and the sets
of automaton states of m; qt,~p is the only accepting
state of env(m). The transition function 6~(,,) is,
for all sets q~ of the automaton states of m:

(q t r , e i f 6r~ (qi, S) = 0
benvtm) (qi, s) = ~6,~ (qi, s) otherwise

Lemma. L(Live (m)) = L(m) w (S '~ - L(c l(m))).

Proof First, consider the case where m is determi-
nistic. Assume oraL(Live(m)). Thus, Live(m) enters
accepting states infinitely often when reading a. If
all of these accepting states are also (accepting)
states of m then m will accept a, hence ct~L(m).
Otherwise, one of the accepting states is qt,ap. In
this case, aq~L(cl(m)) because to enter qtrap, m
makes an undefined transition. From 7q~L(cl(m)),
we conclude ~ ~ (S '~ - L(c l(m))).

Now assume a~L(m) w(S~'--L(cl(m))). If
aeL(m) then, by construction, a~L(Live(m)). If
ae(S'~ then o~r hence cl(m)
attempts an undefined transition on input a.
This means that m attempts an undefined transi-
tion of input ~, so, by construction, Live(m) will
make a transition to qt,ap and accept a. Hence,
aeL(Live(m)).

Next, consider the case where m is non-deter-
ministic. By construction of the accepting states
of Live(m), L(Live(m))=L(m)uL(env(m)). Since
env(m) specifies S'~ the result fol-
lows. []

We can now prove that Live(m) specifies a live-
ness property. By construction, Live(m) never re-
jects an input by attempting an undefined transi-
tion (a "bad thing"). Because m is reduced and
Live(m) accepts any input accepted by m, for each
finite sequence of program states there is an infinite
suffix that can be appended to obtain a sequence
that will be accepted by Live(m) - the defining char-
acteristic of liveness.

3 A trap state is one that has a transition to itself for all inputs

Theorem 4. Live(m) specifies a liveness property.

Proof. First, consider the case where m is determin-
istic. By construction, Live(m) has no undefined
transitions. Therefore L(cl(Live(m))) = S ~ and the
result follows from Theorem 2.

Next, consider the case where m is non-deter-
ministic. Due to the construction of Live(m),

L(c 1 (Live (m))) = L(c l (m)) u L(c l(env (m))).

L(c l(env(m))) D L(env (m)), since c l(env(m)) differs
from env (m) by having more states accepting. Sub-
stituting,

L(c l(Live(m))) ~_ L(c l(m)) w L(env(m)).

Since, by construction, L(env(m))=S~
we get

L(c l(Live (m))) ~ L (c l (m)) w (S ~' - L(c l (m))),

or L(cl(Live(m)))~_S '~ Since L(cl(Live(m)))c_S ~,
the result then follows from Theorem 2. []

Finally, we can prove

Theorem 5. Given a reduced Buchi automaton m,
L(m) = L(Safe (m)) c~ L(Live (m)).

Proof. Substituting for L(Live(m)) according to (4.1)
and for L(Safe(m)) according to Theorem 1, we get

L(Live (m)) n L(Safe (m))

= (L(m) ~ (S '~ -- L(c/(m))) c~ L(c l(m))

= (L(m) n L(c l(m))) w ((S ~ - L(c l(m))) ~ L(c l(m)))

= (L(m) ~ L(c l(m))) u 0

=L(m) []

The construction of Theorem 5 is illustrated
below for mtc of Fig. 1, which specifies Total Cor-
rectness. Safe(mtc) is given in Fig. 7; Live(m,c) is
given in Fig. 8. However, Live(m,c) can be simpli-
fied by combining the three accepting states q2,
q3, and q~ into a single accepting state. Combining
these states results in an equivalent automaton he-
cause once any of these accepting states is entered,

~ ~Done ~ Done ̂ Post
~ o n e " q~ Done^Po~

--,Pre Pre ̂Done ̂Post
r2~ true

Fig. 7. Safe(mj

B. Alpern and F.B. Schneider: Recognizing safety and liveness 123

Pre ̂ D o n e ~

Fig. 8. Live(m~)

ost

Pre ̂Done ̂Post

•//"•---dgone

- ~ P r e -̂..,Done:" q~l Done
~ true

-a~re v Done

Fig. 9. Live (rn~) simplified

Live(mzc) will thereafter remain in accepting states.
Once q2 or ql is entered, Live(rote) will remain in
that state since each of those states has a transition
to itself for all inputs. And, if accepting state q3
is entered then either Live(rote) will forever remain
in q3 because subsequent input symbols satisfy
Done^Post or some input symbol satisfying
--7 (Done A Post) must have been read, causing a
transition to (accepting state) q,, which has a transi-
tion to itself for all inputs. The (equivalent) au-
tomaton that results from combining the three ac-
cepting states of Live(m,c) is given in Fig. 9.

Notice that L(Safe(mtc)) = L(mpc) because
Safe(mtc) differs from mp~ only by having qo as an
accepting state. Thus, we have shown that Partial
Correctness (as specified by mpr of Fig. 4) is the
safety component of Total Correctness. Also, ob-
serve that the simplified Live(m,~) automaton
(Fig. 9) specifies a property comprising sequences
of program states in which either the first state
satisfies --7 Pre or eventually there is a state satisfy-
ing Done. Such a property might well be called
Termination, since it requires the program to reach
Done if started in a state satisfying Pre. Termina-
tion is the liveness component of Total Correct-
ness. We have therefore proved, by our construc-
tion, that Total Correctness is the intersection of
Partial Correctness and Termination.

5 Proving deterministic safety
and liveness properties
Given a deterministic Buchi automaton specifica-
tion of a property, it is possible to extract proof

obligations that must be satisfied by any program
for which that property holds. This forms the basis
for an approach to program verification first pro-
posed in Alpern and Schneider (1985 a) and Alpern
(1986) 4 , and permits us to formalize the relation-
ship of safety and liveness properties specified by
deterministic Buchi automata to invariance and
well-foundedness arguments.

Let m be a deterministic property recognizer
for property P. One can think of m as simulating
- in an abstract way - any program that satisfies
P. To show that a program rc satisfies m, we
demonstrate a correspondence between m and re.
We do this by defining a correspondence invariant
Ci for each automaton state qi, where C~ is a
predicate that holds on a program state s if there
exists a history of 7r containing a program state
s and m enters qi upon reading s. Thus, if m is
ever in automaton state qi, the last program state
it read must satisfy C~. Constraints satisfied by cor-
respondence invariants are defined inductively, as
follows.

For the base case, initially, m is in state qo and
zr is in a state characterized by Init~. Suppose that
upon reading So, the first program state of some
history of 7r, m enters automaton state qi- Thus,
So satisfies Init~ and To j, the transition predicate
labeling the edge that connects qo and qj. There-
fore, Cj must satisfy (Init, ^ Toj)=>C~; for any au-
tomaton state qj entered upon reading the first
symbol of any history of zt, we require

Correspondence Basis:
(V j: qf i Q : (Init~ ^ Toj)=r C~). (5.1)

Next we must prove the induction step. Assume
that if m enters automaton state qi upon reading
program state sk in a history of zc and 0 _ k < K,
then Sk satisfies Cv Consider the case when m reads
SK. Suppose m is in state q~ and that upon reading
program state s~, a transition is made to automa-
ton state qj. By the induction hypothesis SK-1 sat-
isfied Ci and s~ satisfies transition predicate T~.
The appropriate correspondence invariant Cj will
hold provided {C,} o~{T~j~Cj} is valid for any ~,
an atomic action of ft. (If a is not enabled in SK- 1
then the triple is trivially valid because an atomic
action terminates only when started in a state in
which it is enabled.) Generalizing to handle any
atomic action and any automaton state that m
might be in when s x is read, we require:

4 The approach has since been extended to handle properties
specified by non-deterministic automata (Manna and Pnueli
1987; Alpern and Schneider 1987)

124 B. Alpern and F.B. Schneider: Recognizing safety and liveness

Correspondence Induction:
For all ~: ~ d ~ :

For all i: q~Q:
{c,} { A

j:qjeQ
(5.2)

Thus, any collection of predicates satisfying (5.1)
and (5.2) are correspondence invariants for m and
7Z.

In order to establish that rc satisfies P, we must
show that every history of rc is accepted by m. There
are two ways that m might fail to accept a history
G o r ~ :

(1) m attempts an undefined transition when read-
ing o-.

(2) m never enters an accepting state after some
finite prefix of o-.

Thus, in order to prove that every history of
satisfies P, it suffices to show that (1) and (2) are
impossible.

Two obligations ensure that (1) is impossible.
First, we must show that m can make some transi-
tion from its start state upon reading the first pro-
gram state in a history:

Transition Basis: Init~=~ V Toj. (5.3)
j:qj~Q

Second, we must show that m can always make
a transition upon reading subsequent states in a
history. If m is in state qi then the program state
just read by m satisfies a correspondence invariant
Ci. To avoid an undefined transition, any atomic
action ~ that is then executed must transform the
program state so that one of the transition predi-
cates T u emanating from q~ holds. This is guaran-
teed by

Transition Induction: For all ~: ~ d ~ :
For all i: qz~Q:

{c,} { V T,j}.
j:qjeO

(5.4)

Finally, we derive conditions to ensure that m
cannot reject a by failing to enter accepting states
infinitely often (i.e., scenario (2) above). A set Q'
of automaton states is strongly connected if and
only if there is a sequence of transitions from any
element of Q' to any other without involving an
automaton state outside of Q'. A reject knot ~: is
a maximal strongly connected subset of Q contain-
ing no accepting states. To ensure that m does not
reject a, we must prove that no run for a history
of rc is restricted to automaton states in Q-Q~nf.

We do this by constructing a variant function v~
for each reject knot x.

A variant function v~(q, s) is a function from
automaton and program states to some well-
founded set. 5 For simplicity, assume that this well-
founded set is the Natural Numbers. We require
that whenever v~(q, s)=0 for any automata state
q and program state s, then q is not in ~c.

Knot Exit: (Vi: qi~tr (vK(qi) = 0):=~--"1Ci). (5.5)

And, to ensure that the variant function does reach
0, we require that it be decreased by every atomic
action in 7c that might be executed:

Knot Variance:
For all ~: ~ :

For all qiex:

{ Ci /x O < v,,(qi)= V}
(5.6)

{ A ((TijACi)=~v,~(qA<V)}"
j:qjeK

The six proof obligations - Correspondence
Basis (5.1), Correspondence Induction (5.2), Transi-
tion Basis (5.3), Transition Induction (5.4), Knot
Exit (5.5), and Knot Variance (5.6) - are of three
basic forms. Correspondence Basis (5.1), Transition
Basis (5.3), and Knot Exit (5.5) involve proving that
predicate logic formulas are valid. Correspondence
Induction (5.2) and Transition Induction (5.4) in-
volve proving invariance of assertions. And, Knot
Variance (5.6) involves proving that certain events
cause variant functions to be decreased. There is
a relationship between safety and liveness proper-
ties and these three forms of proof obligations.

First, observe that by construction, Safe(m)
cannot have reject knots. Thus, Knot Exit (5.5) and
Knot Variance (5.6) are trivially satisfied, so prov-
ing that a program satisfies Safe(m) never requires
a variant function (or well-foundedness argument).
The remaining proof obligations for Safe (m) consti-
tute an invariance argument. Moreover, if m speci-
fies a safety property then L(m)= L(Safe(m)). Prov-
ing than g satisfies Safe(m) is, therefore, sufficient
in order to prove that zc satisfies m. Thus, safety
properties specified by deterministic Buchi au-
tomata can be proved using only invariance argu-
ments.

Second, recall from Theorem 2 that m specifies
a liveness property if L(cl(m))=S% By construc-
tion, if L(cl(m))=S ~' then it is not possible for m
to attempt an undefined transition. Therefore,
Transition Basis (5.3) and Transition Induction

5 The program state argument is often left implicit

B. Alpern and F.B. Schneider: Recognizing safety and liveness 125

(5.4) are trivially satisfied when trying to prove that
a program rc satisfies a liveness property. Automata
specifying liveness properties can have reject knots,
so Knot Exit (5.5) and Knot Variance (5.6) must
be proved - a variant function of well-foundedness
argument is therefore required in proving a liveness
property. In addition, an invariance argument is
required to satisfy (5.1) and (5.2).

6 Related work

The first formal definition of safety was given in
Lamport (1985). While that definition correctly
captures the intuition for an important class of
safety properties - those invariant under stuttering
- it is inadequate for safety properties that are not
invariant, under stuttering. The formal definition
of safety used in this paper, which was first pro-
posed in Alpern and Schneider (1985 a), is indepen-
dent of stuttering; in Alpern et al. (1985) it is shown
equivalent to Lamport 's for properties that are in-
variant under stuttering. The definition of liveness
used in this paper also first appeared in Alpern
and Schneider (1985a) along with a proof that
every property can be expressed as the conjunction
of a safety property and a liveness property. That
proof is based on a topological characterization
of safety properties as closed sets and liveness prop-
erties as dense sets. The automata-theoretic charac-
terizations and proofs in this paper more closely
parallel the informal definitions of safety and live-
ness in terms of "bad things" and "good things".

In Sistla (1985), an attempt is made to charac-
terize syntactically safety and liveness properties
that are expressed in linear-time temporal logic.
Deductive systems are given for safety and liveness
formulas in a temporal logic with eventually (0),
but without next (C)), or until. In addition, deduc-
tive systems for full (propositional) temporal logic
are given for a subset of the safety properties, called
strong safety properties, and for a subset of the
liveness propertics, called absolute liveness proper-
ties. Finally, Sistla (1985) characterizes automata
for safety properties as those whose states can be
partitioned as "good" and "bad" such that no
"bad" state is ever entered on an accepted input. 6
Sistla independently developed a method similar
to ours for determining whether an automaton spe-
cifies a liveness property Sistla (1986). In Sistla's

6 Sistla proves this result for deterministic Muller automata.
In general, such automata are more powerful than deterministic
Buchi automata. However, a simple consequence of this au-
tomata characterization of safety properties is that any deter-
ministic Muller automata for a safety property is isomorphic
to an equivalent deterministic Buchi automaton and vice versa

method, the closure of the reduced automaton is
treated as a automaton on finite strings. If this
automaton accepts S* the original automaton spe-
cifies a liveness property. Also Sistla (1986) gives
a syntactic characterization of the temporal logic
specification of strong safety properties that can
be defined using Buchi automata.

Another syntactic characterization of safety
and liveness properties appears in Lichtenstein
et al. (1985). The definition of safety given there
coincides with ours; the definition of liveness classi-
fies some properties as liveness that our definition
does not. We do not classify p until q as liveness
because the occurrence of--np before q constitutes
a "bad thing" and therefore p until q has elements
of safety, but Lichtenstein et al. (1985) consider it
liveness. Another difference is that the definitions
in Lichtenstein et al. (1985) are based on existing
temporal logic inference rules (proof obligations)
whereas our definitions are not. Independence from
inference rules makes our results about the rela-
tionship between types of properties and proof
techniques all the more interesting. Also, in con-
trast to the definitions in Lichtenstein et al. (1985),
our characterizations of safety and liveness are in-
dependent of the notation used to express the prop-
erties and therefore apply to a large class of proper-
ties.

7 Conclusions

This paper gives tests to determine whether a prop-
erty specified by a (deterministic or nondeterminis-
tic) Buchi automaton is safety or liveness. For re-
duced deterministic Buchi automata, these tests are
quite simple: such an automaton accepts a safety
property if and only if each state is accepting (or
could be made accepting without increasing the
set of sequences accepted); such an automaton ac-
cepts a liveness property if and only if it has a
transition defined from each state for each input
symbol. We also show how to extract automata
Safe(m) and Live(m) from a Buchi automaton m,
where Safe(m) specifies a safety property, Live(m)
specifies a liveness property, and the property spe-
cified by m is the intersection of the ones specified
by Safe(m) and Live(m). The extraction is illustrated
by proving that Total Correctness is the conjunc-
tion of safety property Partial Correctness and live-
ness property Termination. Finally, we prove that
for properties specified by deterministic Buchi au-
tomata, safety properties can be proved by use of
an invariance argument while liveness properties
also require a well-foundedness argument.

126 B. Alpern and F.B. Schneider: Recognizing safety and liveness

Acknowledgements. David Gries and Joe Halpern provided
helpful comments on a draft of this paper.

References

Alpern B (1986) Proving temporal properties of concurrent pro-
grams: a non-temporal approach. PhD Thesis. Department
of Computer Science, Cornell University, (January 1986)

Atpern B, Demers AJ, Schneider FB (1986) Safety without stut-
tering. Inf Proc Lett 23(4): 177-180

Alpern B, Schneider FB (1985) Defining liveness. Inf Proc Lett
21:181-185

Alpern B, Schneider FB (1985) Verifying temporal properties
without using temporal logic. Tech Rep TR 85-723, Depart-
ment of Computer Science, Cornell University (December
1985)

Alpern B, Schneider FB (1987) Proving boolean combinations
of deterministic properties. Proc 2nd Ann Symp Logic Corn-
put Sci; IEEE Comput Soc, Ithaca, NY (June 1987)

Clarke EM, Emerson, EA, Sistla AP (1986) Automatic verifica-
tion of finite-state concurrent systems using temporal logic
specifications. ACM Trans Programm Languages Syst
8(2):244-263

Eilenberg S (1974) Automata Languages and Machines, VolA.
Academic Press, NY

Hopcroft JE, Ullman JD (1979) Introduction to Automata
Theory, Languages and Computation. Addison-Wesley

Lamport L (1977) Proving the correctness of multiprocess pro-
grams. IEEE Trans Software Eng SE-3, 2:125-143

Lamport L (1983) What good is temporal logic. In: Magon
REA (ed) Information Processing '83 North-Holland, Am-
sterdam, pp 657-668

Lamport L (1985) Logical foundation. In: Paul M, Siegert HJ
(eds) Distributed Systems - Methods and Tools for Specifi-
cation, vol 190. Lect Notes Comput Springer-Verlag, Berlin
Heidelberg New York

Lichtenstein O, Pnueli O, Zuck L (1985) The glory of the past.
Proc Workshop on Logics of Programs, vol 193 (June 1985).
Brooklyn, NY. Lect. Notes Comput Sci, pp 196-218

Manna Z, Pnueli A (1981) Verification of concurrent programs:
The temporal framework. In: Boyer RS, Moore JS (eds)
The Correctness Problem in Computer Science (1981) Inter-
national lectures in Computer Science. Academic Press,
London, pp 141-154

Manna Z, Pnueli A (1987) Specification and Verification of Con-
current Programs by V-Automata. Proc 14th Syrup Princi-
ples of Programming Languages. ACM, Munich (January
1987), pp 1-12

Sistla AP (1985) On characterization of safety and liveness prop-
erties in temporal logic. Proc 4th Symp Principles of Distrib-
uted Computing. ACM, Minaki, (August 1985), pp 39-48

Sistla AP (1986) On characterization of safety and liveness prop-
erties in temporal logic. Tech Rep, GTE Lab, Waltham,
MA (March 1986, revised July 1986)

Sistla AP, Yardi, MY, Wolper P (1985) The complementation
problems for Buchi automata with applications to temporal
logic (extended abstract). Proc 12th International Collo-
quium on Automata, Languages and Programming,
ICALP'85. Nafplion, Greece (July 1985) Lect Notes Comput
Sci Springer Verlag, New York 194:465-474

Vardi M (1987) Verification of concurrent programs: The au-
tomata-theoretic framework. Proc 2nd Annual Symposium
on Logic in Computer Science. IEEE Comput Soc, Ithaca,
NY (June 1987)

Wolper P (1983) Temporal logic can be more expressive. Con-
trol 56(1-2):72-99

