
Impossibility of Distributed Consensus with One Faulty
hocess

MICHAEL J. FISCHER

Yale University, New lloven, Connecticttt

NANCY A: LYNCH

Massathusetts Institwe of fechnology, Cambridge, Massathusetts

AND

MICHAEL S. PATERSON

Universw of Waruidc Covatry, Englatd

Abstract. The consensus problem involves an asvnchronous system ofproceses, some ofwhich may be
unrcliable. The problem is for thc rcliablc processes to agr€e on a bbary value. h this pap€r, it is shown
that every protocol for this problcm has tbe possibility of nontermination, even with only otre faulty
process Ey way of contnst, solutions tte known for lhe synchronous case, tbe 'B),zantine Gen€rals"
problem.

Cat€gori€s snd Subjest D6cripto$; C.2.2 lcrDputer4onmuoiotion Networlsl: Network ltotocols-
yoteol architectwq C.2.4 lconputer{onmunlcation Networlsl: Dsributcd SyilEfi,vdi:rrrihled
applicalions; distrtbwed databases: nztwo* operaulg' .r/sterrui C,4 [Ferfomrre of Systens]: Reliabil-
ity, Availability, and Scrviceability; F,1.2 lconDrtrtion by Ab6trrct Devtces]: Modes ofC-omputation-
para elism;H.2.4 lD''t,.tnse Mrmgencntl: Systemvdistribud systeme, rransadion prccessw

Generat Terms Algorirhrns, Reliability, Theory

Additional Key Words and Phrases: Agr€€ment problem, asynchronous system, Byzantin€ Gen€rals
problem, commit Droblem, consensus problem, distribut€d computing, fault tolcrance, impossibility
proof, reliability

L lntroduction
The problem of reaching agreement among remote proce.sses is one of the most
fundamental problems in distributed computing and is at the core of many

Editing of this pap€r was performed by Suest editor S. L Grahsn- The Editor-in4hief of JACM did
not participate in th€ proccrsiog ofthe paDer.

This work was supported in p.fi by the Office of Naval Rese€rch under C.ortact N00014-82-K4154,
by rhe OI[ce of Army R€scarch under Contrart DAAG29-79-C4155, and by the National Science
Foundation under Gnnls MC$7924370 and MC$EI16678.
This work was origiaally ptsented at tbs 2nd ACM Synposium on Rinciples of Databas€ Syslems,
March 1983.
Authos' prcsent addftsses: M. J. Fischer, Department ofcomputer Sciencq YaIe UniveFity, P.O. Box
2 I 58, Yale Statio4 New gsvetrn CT 0652q N. A. LyDch, Irboratory for Computer Scienc€, Massachu-
setts lnstitute ofTcc.hnology, 545 T€chtrolory Squarc, Cembddgc, MA 02139; M. S. Patenon, Delart-
mert ofcobputer Scienca, University of Warwicb Coventry CV4 7AI. Erylard
Perrnission to mpy without fee all or p€rt of thb mstcrial is gaDted providod that lh€ copies ar€ uot
made or distributcd for dircct comrnercial advatrtage, the ACM copyright notice and the tide of the
pablication and ia datc app€ar, and nodce is given that copying i8 by permission ofthe Association for
Computing Macbincry. To copy olherwis€, or to republish, rcquires a fee and/or specific perrnission.
@ 1985 ACM qp4.54r r/85/04004374$00.75

Jounrd ofth! Anodrdon lor @opulilS Mrdia.ry, VoL 32, No. X April l98t F. 37{-382,

Impossibility of Distribwed Consensus with One Faulty process 375
algorithms for dishibuted data procesing, distributed file managernent, and fault_
tolerant distributed applications.

A well-known form of the problem is the.transaction commit problem.'which
arises in distributed darabas€ systems [6, 13, i3- t 7--i?4f(seeffi irl,"oo,
private communication, quoted in [15]). The problem is for all the data managei
prooesses that have participated in the processing of a particular transaction-to
agr€e on whether to install the transaction's resulb in the database or to discard
them. The latter action might be necessary, for example, if some data rnanagers
were, for ariy reason, unable to carry out the required transaction processing.
Whatever decision is made, all daa managers must make the same aecision in
order to preserve the consistency ofthe database.

Reac-hing the type of agreernent neoded for the "commit" problem is shaightfor_
ward if the participating prooesses and the network are completely reliable. How-
ever, real systems are subject to a number ofpossible faults, such as process crashes,
network partitioning and lost, distorted, or duplicated messages. One can even
consider more Byzantine types of hilure [5, 7, 8, ll, 14, lg, 19] in which faulty
processes might go completely haywire, perhaps even sending messages according
to some malevolent plan. One therefore wang an agrement protocol that is ai
reliable as possible in the presence of such faults. Of course, any protocol can be
overwhclmed by f4ults that are too fircquent or too severe, so the best that one can
hope for is a protocol that is tolerant to a prescribed number of "expected" faults.

In this paper, we show the surprising result that tro complet€ly asynchronous
consensus protocol can tolerate even a single unannounced process death. We do
not consider Byzantine failureg and we assume that lhe mesage system is rcliable-
it delivers all messages correctly and exactly once. Nevertheles, even witl these
assumptions, the stopping ofa single process at an inopportune time can cause any
distributed commit protocol to fail to reach agreement. Thus, this important
problem has no robust solution witbout further assumptions about the computing
environment or still greater restrictions on the kind of failur€s to be tolerated!

Crucial to our proof is that processing is completely asynchronous; that is, we
make no assumptions about the relative speeds of processes or about the delay
time in delivering a message. We also assume that processes do not have access t;
synchronized clocks, so algorithms based on tims,outs, for example, cannot be
used. (In particular, the solutions in [6! arc not aprplicable.) Finally, we do not
postulal€ the ability to detect the death of a proces, so it is impossible for one
process to tell whether another has died (stopped entirel, or is just running very
slowly.

Our impossibility result applies to even a very weak form of the consensw
problem. Asxtme that every process starts with au initial value in {0, I }. A nonfaulty
process decides on a value in lQ ll by entering an appropriate decision starc. All
nonfaulty processes that make a decision are requircd to choose the same value.
For the purpose of the imposibility Foof, we require only that sorze proces
eventually make a decision. (Of course, any algorithm of interest would rcquire
that all nonfaulty proc€ss€s make a decision.) The trivial solution in which, say, 0
is always chosen is ruled out by stipulating that both 0 and I are possible decijion
values, althougb perhaps for dilhrent initial configurations.

Our systcm model is rather shong so as to make our impossibility pro{as widely
applicable as possible. Proceeses arc modeled as automata (with possiUty innniteli
many states) that communicate by means of messages. In one atomic step, a process
can attemirt to receive a message, perform logq!,.compufation on the basis of

376 M. J. FrscHER, N. A. LyNcH, AND M. s. pATERsoN

whether or not a messnge wiis delivered to it (and if so, which one), and send an
arbitrary but finite set of messages to other processes. In particular, an "atomic

broadcast" capability is assumed, so a proces$ can send the same message in one
step to all other processes with the knowledge tlat ifany nonfaulty process receives
the message, then all the nonfaulty pro@sses will. Every message is eventually
delivered as long as the destination process makes infinitely m:!ny atlempts to
receive, but messages can be delayed, arbitrarily long and delivered out of order.

The asynchronous commit protocols in current use all seem to have a "window

of wlnerability"-an interval of time during the execution of the algorithm in
which the delay or inaccessibility ofa single process can cause ttre entire algorithm
to wait indefinitely. It follows from our impossibility result that every commit
protocol has such a "window," confirming a widely believed tenct in the folHore.

2. Consensus Protocols
A consensus protocol P is an asynchronous system of .tV processes (N . 2).
Each proces p has a onebit input register xe, at output r4'isler y, with values in
lD,0, ll, and an unbounded amount of internal storage. The values in the input
and output registers, together with the program counter and intemal storage,
comprise ttie intemal stare. Initial swes $ffiribF- fixed starting values for all but
the input register; in particular, the output rcgister starts with value ,. The states
in which the output register has value 0 or I are distinguished as beinC decision
states. p acts deterrrinistically ar,cording to a tlansition function. The transition
fungtion cannot change the value of the output register once the process bas
reached a decision state; that is, the output regisler is'write-once." The entire
sysiern P is specified by the transition functions associated with each ofthe processes
and the initial values of ttre input r€giste$.

Processes communicate by sending each other messages. A message is a pair
(p, n), where p is the name of the destination process and ltt is a "message value"
from a fixed universe M, The message .ryrrerz maintains a multise! called the
message bufer, of messages that have been sent but not yet delivered. It supports
two abstract operations:

send(p, m): Places (p, rn) in the message buffer;
receiv{p): Deletes some message (A z) from the bulfer and returns m, in which

crne we say (p, m) is delivered, or r€turns the special null marker @
and leaves the buffer unchanged.

Thus, the message system acts nondeterministically, subject only to the condition
that if receive(p) is perfonned infinitely many times, then every message (A z) in
the message buffer is eventually delivered. In particular, the message system is
allowed to return O a finite number of times in response to r€ceive(p), even though
a message (p, rz) is present in the buffer.

A conJiguraion of the system consists of the internal state of each procesq
together with the contents ofthe nessage butrer. An inititl co4ligulation is one in
which each process starts at an initial state and the message buffer is empty.

A slep takes one mnfiguration to anotber and consists of a primitive step by a
single process p. l€t C be a configuration. The step occurs in two phases. First,
receive(p) is performed on the message buffer in Cto obtain a valr.rc m e M U
[@]. Then, depending on p's internal stat€ in C and on ,n, p enteE a new internal
state and sends a finite set of messages to other process€s, Since processes are
deterministic, the step is completely determined by the pair e = 1p, rn), which we

^Impossibility of Distributed Consensus with One Faulty Process 377

FrcURE I

,t ol

eall an event. (This "event" should be thouglrt of as the reoeipt of m by p.) 4C)
denotes the rculting configuration, and we say that e can &. applied to C. Note
that the event (A @) can always be applied to C, so it is always posible for a
process to take another step.

A schedule from C is a finite or infinite sequence o ofevents that can be applied,
in tum, starting from C. The associated sequence of steps is called a run. If o is
finite, we let o(C) denote the resulting configuration, which is said tobr., reachable
from C. A configuration r€achable from some initial configuration is said to be
accessible. Hereafter, all configurations mentioned are assumed to be accessible,

The following lemma exprcsses a 'commutativity" property of schedules.

Lst{Mr L Suppose that ftom some configaration C, the schedules ob 62 lead
to confrgurations Cb C2, respectively, If the sets of processes tak@ steps in or and
02, rcspectively, are disjoint,, then o2 can be applied to Cr dhd or can be applied to
Cz, and both lead to the same conJiguraion G. (See Fie$r€ l.)

PRooF. The nesult follows at once from the system definition, since or and oz
do not interact. E

A configuration C bas decision value v if sl.c,me process p is in a decision state
with y, = v. A @ns€nsus protocol is panially colrect if it satisfies two conditions:

(1) No accessible configuration has more than one decision value.
(2) For each v e {0, ll, some accessible configuration has decision value v.

A process p is noz/aziy in a run provided that it takes infinitely many steps, and
it

'rs
faulty otherwise. A run is admissible provided that at most one process is

faulty and that all messages sent to nonfaulty processes are evortually received.
A run is a deciding rut provided that some process reaches a decision state in

that run. A cons€nsus protocol P i s totalb correct in spite of onefauh ifit is partially
correct, and every admissible run is a deciding run. Our main theorem shows that
every partially correct protocol for the consensus problem has some admissible run
that is not a deciding run.

3. Main Result

THBoREM | . No consensus protocol is totally conect in spite of one fault.
PRooF. Assume to tlle contrary that P is a consensus protocol that is totally

correct in spite of one fault. We prove a sequence of lemmas whia6 sysn0ally lead
to a contradiction.

6

378 M. J. FISCHER, N. A. LYNCH, AND M. S. PATERSON

The basic idea is to show circumstances under which the protocol remains
forever indecisive. This involves two steps. First, we argue that there is some initial
configuration in which the decision is not already predetermined. Second, we
construct an admisible run that avoids ever taking a step that would commit the
system to a particular decision.

Let C be a confrguration and let l/be the sct ofdecision values ofconfigurations
reachable from C. C is bivalent if I I/l : 2. C is univalent if ltll = l, let us say
$-valent or l-valent atnrding to the conesponding decision value. By the total
correctness of P, and the fact rhat there are always admissible runs, V * 6. E

LsruMr 2. P has a bivalent initial contiguration.

Pnoor'. Assume not. Then P must have both Gvalent and l-valent initial
configurations by the assumed prartial corrcrtness. I*t us call two initial configu-
rations adjacent if they differ only in the initial value x, of a single process p. Any
two initial conligurations are joined by a chain of initial configurationg each
adjacent to the next. Hence, there must exist a o-valent initial configuration G
adjacent to a l -valent initial confrguration C1. lrtp be the proces in whose initial
value they differ,

Now consider some admissible deciding run from Co in which process p takes
no steps, and let r be the associated schedule. Then a can be applied to Cr also,
and corresponding configurations in the two runs ar€ identical except for the
internal state of process p. It is easily shown that both runs eventually reach the
same decision value. Ifthe value is 1, then Cs is bivalent; otherwise, Cr is bivalent.
Either case mntradicts the assumed nonexistence of a bivalent initial configura-
tion. E

Lrnur 3. La C be a bivalent conJiguration ofP, and la e = (p, m) be an a,ent
that is applicable to C. La? be the set of configurations reachable from C without
applying e, and let g = e(e) = le(E)lE €E and e is applicable to El. Then,9
conlains a bivalent mnJiguration.

Pnoon. Since e is applicable to C then by definition ofg and the fact that
messages can be delayed arbirrarily, e is applicable to every E e8.

Now assume that I contails no bivalent configurations, so every configuration
D e 9 is univalent We proceed to derive a contradiction.

l,et Ei be an ,:valent configuratiou reachable from C, j : 0, l. (E exists since C
is bivalent.) lf Eeg,let Fr: e(tr) e 9. Otherwise, e was applied in reaching 81,
and so there exists .F, € 9 from which Ei is reachable. In either case, 4 is ,'-valent
since Fi is not bivalent (since Fi e g artd g contains no bivalent configurations)
and one ofE; and .Q is reachable from the other. Sinc€ Fr e I, i = 0, l, 9 contains
both 0-valent and l-valent conligurations.

Call two configurations neighbors if one results from the other in a single step.
By an easy induction, there exist neighbors Co, Cr e E such that Dt = e(C) is
ivalent, i= 0, l. Without loss of generality, Q = e'(Cd wherc e' = (p', m').

Case l. lf p'*p,thenDr = e'(Do) bykmma 1. This is imposible, since any
successor ofa O-valent configuration is 0-valent. (See Figure 2.)

Case 2. lf p' = p, then consider any finite deciding run from G in which p
takes no steps.

Irt o be the corresponding schedule, and let I = o(Ci, By kmma l, o is
applicable to Di, and it leads to an ivalent configuration Ei = o12t1, i = 0, l. Also

Impossibility of Distributed Consensus with One Faulty Process

FlcuRE 2

FrcURE 3

379

6

by Lemma l, e(A) : Eo and e(e'(A)) = Er. (See Figure 3.) Hence, /{ is bivalent.
But this is imposible since the run to I is deciding (by asumption), so I must be
univalent.

In each case, we reached a contradiction, so .9 contains a bivalent configura-
tion. tr

Any deciding run from a bivalent initial configuration goes to a univalent
configuration, so lhere must be some single step that goes from a bivalent to a
univalent configuration. Such a step determines the eventual decision value. We
now show that it is always possible to run the system in a way that avoids such
steps, leading to an admissible nondeciding run.

The run is constructed in stages, starting from an initial configuration. We ensure
that the run is admissible in tbe following way. A queue of processes is maintained,
initially in an aftitrary order, and the message buffer in a configuration is ordered
according to the time the mesages were sent, anliest first. Each stage consists of
one or mole process sleps. The stage ends with the first process in the process
queue taking a step in which, ifits message queue was not empty at the start ofthe

6

- - . d ':n\
(l
V - - r e

380 M. J. FTSCHE& N. A. LYNCH, AND M. S. PATERSON

stage, its earliest message is received. This process is then moved to the back ofthe
process queue. In any infinite sequence of such stages every proces takes infinitely
maDy step6 and receives every message sent to it The run is therefore admisible.
Our problem, of course, is to do this in such a way as to avoid a decision ever
being reached.

l.€t G be a bivalent initial configuration whoee existelce is assured by lrmma
2. Execution begins in Co, and we ensurc that every stage begins from a bivalent
configuration. Suppose then that configuration C is bivalent and that process p
heads the priority queue. lrt z be the earliest message to p in Cs message bulfer,
if any, and O otherwise. l-et e : (p, m). By Itmma 3, there is a bivalent
configuration C' reachable from C by a schedule in which e is the last event
applied. The corresponding sequence of steps defines the stage.

Since each stage ends in a bivalent configuration, every stage in the coDstruction
of the infinite schedule succeeds. The resulting run is admissible, and no decision
is ever reached. It follows that P is not totally correct. tr

4. Initially Dead Processes

In this section, we exhibit a protocol that solves the consensus problem for N
processes as long as a majority of the processes are nonfaulty and no proces dies
during the execution of the protocol. No proces knows in advance, however,
which of the processes are initially dead and which are not.

The protocol works in two stages. During the fint stage, the processes construct
a directed graph G with a node corresponding to each proc€ss. Every process
broadcasts a message containing its process number and then listens for messages
fron Z - I other processes, where L - l(N + lr/21. G has an edgp from itojiffj
receives a message from i. Thus, G has indegree Z - 1.

In the second stage, the prcrcess€s cotrstnrct G' (the transitive closure of G) in
the sense that upon completion ofthis stage, each process & knows about all of the
edges (;, &) incident on & in G+ as well as the initial values of all such7.

To carry out this stagg each process broadcasts io all other processes its process
number and initial value together with the names of the .L - I processes it heard
from during the first sage. It then waits until it has received a stage 2 me$age
from every anc€stor in G that it kaows about. Initially, it knows only about the
I - I processes from which it heard directly during the first stago, but it learns
about additional ancestoF from the stage 2 messages that it receives. Waiting
continues until such time as all currently ktrowD-about processes have been heard
from.

At this poinq each proces knows all of its own ancesto$ and the edges of 6
incident on them. Using this information, it computes all of the edges of G*
incident on each of its ancestors. It then delermines which of its anceston bclong
to an initial cliqloe of G+, that is, a clciue with Do incoming edges. To do this, it
uses the fact that a node k is in an initial clique ilf k is itself an ancestor of every
node j that is an ancestor of /<. Since every node in G* has at least I - I
predec€ssors, there can be only one initial clique; it has cardinality at least Z, and
every process that completes the second stage knows exactly the set of processes
comprising it.

Finally, each process makes a decision based on the initial values ofthe prooe$rcs
in rhe initial clique using any agreed-upon rule. Since all processes know the initial
values of all memben ofthe initial clique, they all reach the same decision.

The correctness of this protocol proves the following theorem.

Impossibility of Distributed Consensus with One Faulty Process 38 I

THeoRErrr 2. There is a partially coftect consensus protocol in which all non-
faulty processes always reach a decision, provided no prccesses die during its
execution and a strict majority of the processes are alive initially.

5. Conclusion
We have shown that a natural and important problem offault-tolerant cooperative
computing cannot be solved in a totally a.synchronous model of computation.
These results do not show tlat such problems ca[not be'solved" in practice;
ratheq they point up the need for more refined models of distribufed computing
that better rellect realistic asumptions about proc€ssor and communication tim-
ingq and for less stringent r€quirements on the solution to such problems. (For
example, termination migbt be rcquired only with probability l.) Suhequent to
the original announc€ment ofthese results [12], progres has been made along both
ofthese lines [-4, 9, 10,20, 25].

AcKNowLEDcMENT. The authon would like to thank John Guttag for helpful
discusions during the initial phase of this work, aqd Gene Stark for discussion of
the results and a careful reading of the text, Tliey also thank the referees for
pointing out several places where the presentation needed improvement.

REFERENCES

l. Amy^, C., DoLEv, D., ^ND Gtr. J. Asynchronous Bpantine conscnsus. b hueedirrgs of the
?rd Annual ACM Symposium ol Principles of Distributed Computing (Vancouver, 8.C.,

-C:nada

Aug. 27-29). ACM, New Yorlq 19t4, pp. I 19-133.
2, 8EN-OR, M, Another advantage offree choicc: C.omplctcly asynchronous agreemcnt protocols. In

Proceedings ofthe 2nd Annual ACM Symposium on principles olDistributed Computirv (Mron.(tfxlt,
Qucbcc, Canade Aug. 17-19). ACM, New York, t9E3, pp. 2Z-30.

3. BR cH^, G. An asynchronous f.(n - l)/3j-r€silicnt contflrtars r/.lotfrf,l,la prueedings {the 3rd
Annusl ACM Eymposiun on hinciples of Disfilb ed Comput@ (V^n6\,ter, B.C., Canada, Aug
27-29). ACM, Nal Yorlq 1984, pp. t54-162.

4. BRAoHA, G,, AND TouEG, S, R€silient consensus protocols. tn of the 2nd Annua!
ACM Symposhmt on hinciples of Disttibu,ed Compuw (Monrrcal, eucbec, CaDadA Aug, lZ-
l9). ACM, New York, t983, p,p. 12-26.

5. DBMruo, R. A., LYNC& N. A,, AND MBRr,nr, M. I. Cryptograpbic protocol& In tloceedir8r o/
the ll,h Annual ACM Synposium on Theory of Cowtrw (Va Franci$o, Caff., Uay i-zj.
ACM, New York, 1982, pp. 3E3-400.

6. DoEv, D,, ̂ ND STRoNG, H. R. Dstribuld commit with bounded wz 'irry,.ln hueedings ofthe
2nd Annual IEEE Swposlum on Reliability in D&nbud Sofware and Database Systems.IEEE,
New Yor'lq 19t2, pp. 53{0.

7. DolEv, D., AND S-rRoNc, H. R. Polynooial algorithms for multiple proc€ssor agr€ement. In
hoceedings of the |1th Annual ACM Swposium on Theory dconfiiing (San Fnncisco, Calif.,
May 5-7). ACM, New York, 19E2, pp. r()l-407.

E. DoEv, D., FrscHE& M., FowHR, R., LyNcB, N., AND STRoNG, H. R. An efficient etgorithm for
Byraatine agr€ement without authentication. I4f. Contd 52,3 (19t3),257 -2j4,

9. Douv, D., LyNcH, N., PNTER, S., SI^RK, E,, AND WEn|L, W. Reaching apFoximatr agr€om€nt
in thc presence of faula. In Pr@eedings ol the jrd Anaual IEEE S@wsium on Reliability in
Distribwed Mware and Database Systems.IEEE, New york, 1983, pp. 145-154.

10. DwoRK, C., LyNcH, N., AND SrocKMEaER, L. Conscnsuc in the prcsence ofpartial synchrony, In
hocedings d the 3d Anrual ACM Eymposium on p nciples d Distribaed Conptting (yamtr
ver, 8.C., Canada, Aug, 27-29), ACM, New yorls 1984, pp. 103-118.

I l. FrscHER, M., AND LyNcH. N. A low€r bound for the tim€ to assure interastive consistency. I4f,
Pfoc. Leu. 14, 4 (19t2), 183-t86.

12. FISCHER, M., LyNcH, N., ^ND P^mRsoN, M. Impossibility of distributed conscnsus witl onc
hulty gprocess, In Procaadiags dthe 2nd Anmml ACM SIGACT"SIGMOD Sympsium on principla
of Database Systf,ms (Atlanta, G&, Mar. 2l-23). ACM, Ncw Yodq 1983, pp. l-?.

382 M. J, FISCHER, N. A. LYNCH, AND M. S. PATERSON

13. GARCIA-MoLfN^, H. Elections in a distdbuted computing sysf.cm. IEEE Truns. Compu- C.31, I
(1982), 48-59.

14. LAMpoRr, L., SHogr^K, R., AND PEASE, M. The Bpantine Generals problem. /CM Trans. prog.
Iang. Syst.4 3 (Julv 1982), 382-a01.

15. L^MpsoN, B. Replicated C-ommir. CSL Norcbook Entry, Xcror Palo Alto Rcs€arsh C€nter, Palo
Alto, Calif, 1981.

16. L^MpsoN, 8., ̂ ND STURGT$ H. Crssh r€c.very in a distributed drta storagp system, Manuscript,
Xerox Palo Alto Research Crnter, Pdo Alto, Celif., 1979.

17. LINDSAY, B. G,, SELINGER, P. G., G^LnEru, C., GR y, J. N., LoRrE, R. A., PRrcq T. G., PurzoLU,
F., TR^IGER, I. L., ^ND WADq B. W. Not€s on distributed darabas€s. IBM Rcs, Rep. RJ257l,
IBM Res€arch Dvision, San Jose, Cslif., 1979.

18. LyNcH, N., RscHEn, M., ̂ ND FowLER, R. A simple and €ffcient Byantine G€n€rals rlgorithm.
lt Proeeedings of the 2nd Annual IEEE Sgposium on Reliability in Distribaed Sotlware and
Database Systems,IEEE, Nstr York, 1982, pp. 4G52.

19. PE^SE, M., SH6r K, R., AND LaMpoRr, L Reaching agr€ement in ihe pres€ncc offaults" "/.lCM
27, 2 (Aw. 1980), 228-234.

20. RABTN, M. Randomiz€d Byzantine Generals. In P,,ace?dirEJ olthe 21th Anrual IEEE Syntpoium
on Foundations d Complrel ,Scimre. IEEE, New York, 1983, pp. 403-409.

21. REED, D. Naming and synehronization in a decentralizcd computer system. Ph.D. dissertation,
Technical Repon MIT/rS/rR-205, Massachus€tts Institute of Technologr, Canbridge, Mass.,
1978.

22. RoSENKRANTZ, D. J., STEARNS, R 8,, AND Lsw$, P. M., II. System level concurr"ncl control for
distributcd dabbase sysr€ns. ACM Truns. Datar4Je Sysr. J, 2 (Junc t978), l?8-198.

23. SKEEN, D. A d€centralized termination protocol, ln Procedings of thc 2nd Annual IEEE Syn-
posium on Reliability in Disfiibaed Sofware a d Database Sys1r' ns.lEEE, Ncw Yorlq 1982, D,p.

24. SKESN, D., AND SToNEBI.aKER, M. A formal modcl of cnsh rccovery in a disfibuted system.
IEEE Trans. Sofiw. Engineefing SE-g, 3 (Mzy l9E3), 219-22E,

25. TouEc, S. Randomized Byzantine Agr€ements. lt Procedings of the 3d Arlrrual ACM SWw
sium on Principles of Distrifuled Computing (Vancouvel 8.C., Canada, Au& 27-29). ACM, New
York, I9E4, pp. l6Fl7E.

RECETVED sEprEMaEn 1983: REvrsED ocroBEn 1984: ̂ ccEFrED ocroBEf,. 1984

Jound ofthc A$Eiation fo. Computini Mlchin6y, Vol. 32, No. 2, AEil 19t5.

