
NOVA-Fortis: A Fault-Tolerant Non-Volatile Main
Memory File System

Jian Xu∗
University of California, San Diego

jix024@eng.ucsd.edu

Lu Zhang∗
University of California, San Diego

luzh@eng.ucsd.edu

Amirsaman Memaripour
University of California, San Diego

Akshatha Gangadharaiah
University of California, San Diego

Amit Borase
University of California, San Diego

Tamires Brito Da Silva
University of California, San Diego

Steven Swanson
University of California, San Diego

swanson@cs.ucsd.edu

Andy Rudoff
Intel Corporation

andy.rudoff@intel.com

ABSTRACT
Emerging fast, persistent memories will enable systems that
combine conventional DRAM with large amounts of non-
volatile main memory (NVMM) and provide huge increases
in storage performance. Fully realizing this potential requires
fundamental changes in how system software manages, pro-
tects, and provides access to data that resides in NVMM. We
address these needs by describing an NVMM-optimized file
system called NOVA-Fortis that is both fast and resilient in
the face of corruption due to media errors and software bugs.
We identify and propose solutions for the unique challenges
in adding fault tolerance to an NVMM file system, adapt
state-of-the-art reliability techniques to an NVMM file sys-
tem, and quantify the performance and storage overheads
of these techniques. We find that NOVA-Fortis’ reliability
features consume 14.8% of the storage for redundancy and re-
duce application-level performance by between 2% and 38%
compared to the same file system with the features removed.
NOVA-Fortis outperforms DAX-aware file systems without
reliability features by 1.5× on average. It outperforms reli-
able, block-based file systems running on NVMM by 3× on
average.

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132761

CCS CONCEPTS
• Information systems→ Phase change memory; Mirror-
ing; RAID; Point-in-time copies;

KEYWORDS
Persistent Memory, Non-volatile Memory, Direct Access,
DAX, File Systems, Reliability

ACM Reference Format:
Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangad-
haraiah, Amit Borase, Tamires Brito Da Silva, Steven Swanson,
and Andy Rudoff. 2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile
Main Memory File System. In Proceedings of ACM SIGOPS 26th Sym-
posium on Operating Systems Principles (SOSP ’17). ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3132747.3132761

1 INTRODUCTION
Fast, persistent memory technologies (e.g., battery-backed
NVDIMMs [37] or Intel and Micron’s 3D XPoint [36]) will
enable computer systems with expansive memory systems
that combine volatile and non-volatile memories. These hy-
brid memory systems offer the promise of dramatic increases
in storage performance.
Integrating NVMMs into computer systems presents a

host of interesting challenges. The most pressing of these
focus on how we should redesign existing software com-
ponents (e.g., file systems) to accommodate and exploit the
different performance characteristics, interfaces, and seman-
tics that NVMMs provide.

Several groups have proposed new file systems [12, 15, 64]
designed specifically for NVMMs and several Windows and
Linux file systems now include at least rudimentary support
for them [10, 20, 63]. These file systems provide significant
performance gains for data access and support “direct access”
(or DAX-style) mmap() that allows applications to access a

478

https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

file’s contents directly using load and store instructions, a
likely “killer app” for NVMMs.

Despite these NVMM-centric performance improvements,
none of these file systems provide the data protection fea-
tures necessary to detect and correct media errors, protect
against data corruption due to misbehaving code, or perform
consistent backups of the NVMM’s contents. File system
stacks in wide use (e.g., ext4 running atop LVM, Btrfs, and
ZFS) provide some or all of these capabilities for block-based
storage. If users are to trust NVMM file systems with critical
data, they will need these features as well.
From a reliability perspective, there are four key differ-

ences between conventional block-based file systems and
NVMM file systems.
First, the memory controller reports persistent memory

media errors as non-maskable interrupts rather than error
codes from a block driver. Further, the granularity of errors
is smaller (e.g., a cache line) and varies depending on the
memory device.
Second, persistent memory file systems must support

DAX-style memory mapping that maps persistent memory
pages directly into the application’s address space. DAX is
the fastest way to access persistent memory since it elimi-
nates all operating and file system code from the access path.
However, it means a file’s contents can change without the
file system’s knowledge, something that is not possible in a
block-based file system.

Third, the entire file system resides in the kernel’s address
space, vastly increasing vulnerability to “scribbles” – errant
stores from misbehaving kernel code.
Fourth, NVMMs are vastly faster than block-based stor-

age devices. This means that the trade-offs block-based file
systems make between reliability and performance need a
thorough re-evaluation.

We explore the impact of these differences on file system
reliability mechanisms by building NOVA-Fortis, an NVMM
file system that adds fault-tolerance to NOVA [64] by in-
corporating snapshots, replication, checksums, and RAID-4
parity protection.

In applying these techniques to an NVMM file system, we
have developed the principle of caveat DAXor (“let the DAXer
beware”): Applications that use DAX-style mmap() must ac-
cept responsibility for protecting their data’s integrity and
consistency.

Protecting and guaranteeing consistency for DAX mmap()’d
data is complex and challenging. The file system cannot fix
that and should not try. Instead, the file system should stu-
diously avoid imposing any performance overhead on DAX-
style access, except when absolutely necessary. For data that
is not mapped, the file system should retain responsibility
for data integrity.

Caveat DAXor has two important consequences for NOVA-
Fortis’ design. The first applies to most other NVMM file
systems: To maximize performance, applications are respon-
sible for enforcing ordering on stores to mapped data to
ensure consistency in the face of system failure.

The second consequence arises because NOVA-Fortis uses
parity to protect file data from corruption. Keeping error
correction information up-to-date for mapped data would
require interposing on every store, imposing a significant
performance overhead. Instead, NOVA-Fortis requires ap-
plications to take responsibility for data protection of data
while it is mapped and restores parity protection when the
memory is unmapped.
We quantify the performance and storage overhead of

NOVA-Fortis’ fault-tolerance mechanisms and these design
decisions and evaluate their effectiveness at preventing cor-
ruption of both file system metadata and file data.

We make the following contributions:
(1) We identify the unique challenges that the caveat DAXor

principle presents to building a fault-tolerant NVMM
file systems.

(2) We describe a fast replication algorithm called Tick-
Tock for NVMM data structures that combines atomic
update with error detection and recovery.

(3) We adapt state-of-the-art techniques for data protec-
tion to work in NOVA-Fortis and to accommodate
DAX-style mmap().

(4) We quantify NOVA-Fortis’ vulnerability to scribbles
and develop techniques to reduce this vulnerability.

(5) We quantify the performance and storage overheads
of NOVA-Fortis’ data protection mechanisms.

We find that the extra storage NOVA-Fortis needs to pro-
vide fault-tolerance consumes 14.8% of file system space and
reduces application-level performance by between 2% and
38% compared to NOVA. NOVA-Fortis outperforms DAX-
aware file systems without reliability features by 1.5× on
average. It outperforms reliable, block-based file systems
running on NVMM by 3× on average.
To describe NOVA-Fortis, we start by providing a brief

primer on NVMM’s implications for system designers, exist-
ing NVMM file systems, key issues in file system reliability,
and the NOVA filesystem (Section 2). Then, we describe
NOVA-Fortis’ snapshot and (meta)data protection mecha-
nisms (Sections 3 and 4). Section 5 evaluates these mecha-
nisms, and Section 6 presents our conclusions.

2 BACKGROUND
NOVA-Fortis targets memory systems that include emerging
non-volatile memory technologies along with DRAM. This
section first provides a brief survey of NVMM technologies
and the opportunities and challenges they present. Then we

479

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

describe recent work on NVMM file systems and discuss key
issues in file system reliability. Finally, we provide a brief
primer on NOVA.

2.1 Non-volatile Memory Technologies
Modern server platforms have support NVMM in form of
NVDIMMs [22, 37] and the Linux kernel includes low-level
drivers for identifying physical address regions that are non-
volatile, etc. NVDIMMs are commercially available from sev-
eral vendors in form of DRAM DIMMs that can store their
contents to an on-board flash-memory chip in case of power
failure with the help of super-capacitors.
NVDIMMs that dispense with flash and battery backup

are expected to appear in systems soon. Phase change mem-
ory (PCM) [32, 44], resistive RAM (ReRAM) [18, 56], and
3D XPoint memory technology [36] are denser than DRAM,
and may enable very large, non-volatile main memories.
Their latencies are longer than DRAM, however, making it
unlikely that they will fully replace DRAM as main mem-
ory. Other technologies, such as spin-torque transfer RAM
(STT-RAM) [28] are faster, but less dense and may find other
roles in future systems (e.g., as non-volatile caches [67]).
These technologies are all under active development and
knowledge about their reliability and performance is evolv-
ing rapidly.
Commercial availability of these technologies appears to

be close at hand. The 3D XPoint memory technology has
already appeared in SSDs [25], and is expected to appear on
the processor memory bus shortly [26]. In addition all major
memory manufacturers have candidate technologies that
could compete with 3D XPoint. Consequently, we expect
hybrid volatile/non-volatile memory hierarchies to become
common in large systems.
Allowing programmers to build useful data structures

with NVMMs requires CPUs to make guarantees about when
stores become persistent that programmers can use to guar-
antee consistency after a system crash [2, 6]. Without these
guarantees it is impossible to build data structures in NVMM
that are reliable in the face of power failures [11, 60, 61].

NVMM-aware systems provide some form of persist barrier
that allows programmers to ensure that earlier stores become
persistent before later stores. Researchers have proposed
several different kinds of persist barriers [12, 30, 41].

For example, under x86 a persist barrier comprises a clflush
or clwb [24] instruction to force cache lines into the system’s
“persistence domain” and a conventional memory fence to
enforce ordering. Once a store reaches the persistence do-
main, the system guarantees it will reach NVMM, even in the
case of crash. NOVA-Fortis and other NVMM file systems
assume that these or similar instructions are available.

2.2 NVMM File Systems and DAX
Several groups have designed NVMM file systems [12, 14,
15, 63, 64] that address the unique challenges that NVMMs’
performance and byte-addressible interface present. One of
these, NOVA, is the basis for NOVA-Fortis, and we describe
it in more detail in Section 2.4.
NVMMs’ low latencies make software efficiency much

more important than in block-based storage devices [7, 9, 62,
65].
NVMM-aware CPUs provide a load/store interface with

atomic 8-byte 1 operations rather than a block-based inter-
face with block- or sector-based atomicity. NVMM file sys-
tems can use these atomic updates to implement features
such as complex atomic data and metadata updates, but do-
ing so requires different data structures and algorithms than
block-based file systems have employed.

Since NVMMs reside on the processor’s memory bus, ap-
plications should be able to access them directly via loads
and stores. NVMM file systems provide this ability via di-
rect access (or “DAX”). DAX allows read and write system
calls to bypass the page cache and access NVMM directly.
DAX mmap() maps the NVMM physical pages that hold a
file directly into an application’s address space, so the appli-
cation can access and modify file data with loads and stores
and use persist barriers to enforce ordering constraints. File
systems for both Windows [20] and Linux [10, 63] support
DAX mmap().
DAX mmap() is a likely “killer app” for NVMMs since it

gives applications the fastest possible access to stored data
and allows them to build complex, persistent, pointer-based
data structures. The typical usage model would have the
application create a large file in an NVMM file system, use
mmap() to map it into its own address space, and then rely
on a userspace library [11, 42, 61] to manage it.
Building persistent data structures that are robust in the

face of system and application failures is a difficult program-
ming challenge and the first inspiration for the caveat DAXor
principle. Building data structures in NVMM requires the ap-
plication (or library) to take responsibility for allocating and
freeing persistent memory and avoiding a host of new bugs
that can arise in memory systems that combine persistent
and transient state [11].
Applications are also responsible for enforcing ordering

relationships between stores to ensure that the application
can recover from an unexpected system failure. Conven-
tional mmap()-based applications use msync() for this pur-
pose. msync() works with DAX mmap(), but it is expensive,
non-atomic, and only operates on pages. Persist barriers
are much faster than msync() and better-suited to building

1NVMM-aware Intel CPUs provide 8-byte atomic operations. Other archi-
tectures may provide different atomicity semantics.

480

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

complex data structures, but they are more difficult to use
correctly.

2.3 File System Consistency and Reliability
Apart from their core function of storing and retrieving data,
file systems also provide facilities to protect the data they
hold from corruption due to system failures, media errors,
and software bugs (both in the file system and elsewhere).

File systems have devised a variety of different techniques
to guarantee system-wide consistency of file system data
structures, including journaling [15, 58], copy-on-write [8,
12, 45] and log-structuring [46, 47].

Highly-reliable file systems like ZFS [8] and Btrfs [45]
provide two key features to protect data and metadata: The
ability to take snapshots of the file system (to facilitate back-
ups) and set of mechanisms to detect and recover from data
corruption due to media errors and other causes.
Existing DAX file systems provide neither of these fea-

tures, limiting their usefulness in mission-critical applica-
tions. Below, we discuss the importance of each feature and
existing approaches.

2.3.1 Snapshots. Snapshots provide a consistent image
of the file system at a moment in time. Their most impor-
tant application is facilitating consistent backups without
unmounting the file system, affording protection against
catastrophic system failures and the accidental deletion or
modification of files.

Many modern file systems have built-in support for snap-
shots [8, 29, 45]. In other systems the underlying storage
stack (e.g., LVM in Linux) can take snapshots of the underly-
ing block device.
Neither existing DAX-enabled NVMM file systems nor

current low-level NVMM drivers support snapshots, making
consistent online backups impossible.

2.3.2 Data Corruption. File systems are subject to a wide
array of data corruption mechanisms including media er-
rors that cause storage media to return incorrect values
and software errors that store incorrect data to the media.
Data corruption and software errors in the storage stack
have been thoroughly studied for hard disks [4, 49, 50],
SSDs [34, 40, 51] and DRAM-based memories [52, 54, 55].
The results of DRAM-based studies apply to DRAM-based
NVDIMMs, but there have been no (publicly-available) stud-
ies of error behaviors in emerging NVMM technologies.
Storage devices use error-correcting codes (ECC) to pro-

tect against media errors. Errors that ECC detects but cannot
correct result in uncorrectable media errors. For block-based
storage, these errors appear as read or write failures from
the storage driver. Intel NVMM-based systems report these

NOVA inode:

File pages:

Head Tail

chmod
write
0~8k

File Page 1 File Page 2 File Page 1

write
0~4kInode log:

Inode update File write

Stale Live

Uncommitted

...

Log entry type:

File page state:

Figure 1: NOVA inode log structure – A NOVA inode
log records changes to the inode (e.g., themode change
and two file write operations shown above). NOVA
stores file data outside the log.

media errors via an unmaskable machine-check exception
(MCE) (see Section 4.1).

Software errors can also cause data corruption. If the file
system is buggy, it may write data in the wrong place or
fail to write at all. Other code in the kernel can corrupt file
system data by “scribbling” [31] on file system data structures
or data buffers.

Scribbles are an especially critical problem for NVMM file
systems, since the NVMM ismapped into the kernel’s address
space. As a result, all of file system’s data and metadata are
always vulnerable to scribbles.

We discuss other prior work on file system reliability as it
relates to NOVA-Fortis in Section 4.8.

2.4 The NOVA File System
NOVA-Fortis is based on the NOVA NVMM file system [64].
NOVA’s initial design focused on two goals: Fully expos-
ing the performance that NVMMs offer and providing very
strong consistency guarantees – all operations in NOVA are
atomic. Below, we describe the features of NOVA that are
most relevant to our description of NOVA-Fortis.
Each inode in a NOVA file system has a private log that

records changes to the inode. Figure 1 illustrates the relation-
ship between an inode, its log, and file data. NOVA stores
the log as a linked list of 4 KB NVMM pages, so logs are non-
contiguous. To perform a file operation that affects a single
inode, NOVA appends a log entry to the log and updates the
pointer to the log’s tail using an atomic, 64-bit store.
For writes, NOVA uses copy-on-write, allocating new

pages for the written data. The log entry for a write holds
pointers to the newly written pages, atomically replacing
them in the file. NOVA immediately reclaims the resulting
stale pages.
For complex file operations that involve multiple inodes

(e.g., moving a file between directories), NOVA uses small,
fixed-size journals (one per core) to store new tail pointers
for all the inodes and update them atomically.

481

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

NOVA periodically performs garbage collection on the
inode logs by scanning and compacting the log. Since the
logs do not contain file data, they are shorter and garbage
collection is less critical than in a conventional log-structured
file system.

To maximize concurrency, NOVA uses per-CPU structures
in DRAM to allocate NVMM pages and inodes. It also caches
inode metadata in DRAM to minimize accesses to NVMM
(which is projected to be slower than DRAM), and uses one
DRAM-based radix tree per file to map file offsets to NVMM
pages.
NOVA divides the allocatable NVMM into multiple re-

gions, one region per CPU core. A per-core allocatormanages
each of the regions, minimizing contention during memory
allocation.
After a system crash, NOVA must scan all the logs to re-

build the memory allocator state. Since, there are many logs,
NOVA aggressively parallelizes the scan. Recovering a 50 GB
NOVA file system takes just over 1/10th of a second [64].

3 SNAPSHOTS
NOVA-Fortis’ snapshot support lets system administrators
take consistent snapshots of the file system while applica-
tions are running. The system can mount a snapshot as a
read-only file system or roll the file system back to a previ-
ous snapshot. NOVA-Fortis supports an unlimited number of
snapshots, and snapshots can be deleted in any order. NOVA-
Fortis is the first NVMM file system that supports taking
consistent snapshots when applications modify file data via
DAX mmap().
Below, we described the three central challenges that

NOVA-Fortis’ snapshot mechanisms address: Taking effi-
cient snapshots, managing storage for snapshots, and taking
usable snapshots of DAX mmap()’d files.

3.1 Taking and Restoring Snapshots
Applications expect efficient snapshot creation as well as
high performance from NVMM file systems: Taking a snap-
shot should have low latency, incurminimalwrites to NVMM,
and not block file system write operations. None of the ex-
isting NVMM file systems meet all these requirements.

NOVA-Fortis implements snapshots bymaintaining a global
snapshot ID for the file system and storing the current snap-
shot ID in each log entry. Taking a snapshot increments the
global snapshot ID and records the old snapshot ID in a list
of valid snapshots. Creating a new snapshot in NOVA-Fortis
does not block file system write operations, and if no files are
mmap()’d it takes constant time regardless of the file system
volume size.

To restore the file system to a snapshot, NOVA-Fortis
mounts the file system read only. Then, to open a file, it

traverses the log only while the log entries’ snapshot IDs are
smaller than or equal to the target snapshot’s ID.

Below we describe how the snapshot mechanism interacts
with normal file operations. Then, we describe how NOVA-
Fortis takes consistent snapshots while applications are using
DAX-mmap(). Finally, we evaluate the impact of snapshots
on NOVA-Fortis’ resource consumption and on application
performance.

3.2 Snapshot Management
To take a snapshot NOVA-Fortis must preserve file contents
from previous snapshots while also being able to recover the
space a snapshot occupied after its deletion. In this decription,
we use “snapshot” to denote both the file system’s state when
a snapshot is taken and the set of file operations since the
previous snapshot.

NOVA-Fortis maintains a snapshot manifest for each snap-
shot. Entries in the manifest contain a pointer to a log entry,
a birth snapshot ID, and a death snapshot ID. We denote a
manifest entry with [create snapshot ID, delete snapshot ID).
The manifest for a snapshot ID contains entries for all the
log entries that were born (i.e., created) with that snapshot
ID and have since died (i.e., become stale because another
write replaced them) in a different snapshot. If a snapshot
is deleted, the manifest entries for that snapshot become
part of the following snapshot. This can result in a snapshot
containing multiple manifest entries for the same file data.
In this case, it is safe to remove the older entry (i.e., those
with earlier birth snapshot IDs).

Figure 2 illustrates how NOVA-Fortis manages snapshot
manifests. In Figure 2 (a), an application issues two writes. In
(b), NOVA-Fortis takes a snapshot, increments the snapshot
ID (Step 1), and performs at write to location 0. The new
write log entry has snapshot ID 1 (Step 2), since it was born
in snapshot 1.

The write to location 0 in (b) kills the write to that location
in (a). NOVA-Fortis checks whether that log entry was born
and died in different snapshots. In the example, it was born
in snapshot 0 and died in snapshot 1, so NOVA-Fortis adds a
entry to the snapshot 0 manifest (Step 3) and preserves the
log entry. In Figure 2 (c), the application issues two writes
that overwrite entries in snapshots 0 and 1, so NOVA-Fortis
adds entries to those manifests.

In Figure 2 (d), NOVA-Fortis deletes snapshot 0 by remov-
ing it from the list of live snapshots and adding the manifest
entries for snapshot 0 to snapshot 1’s manifest (Step 4). In
effect, this moves the start of snapshot 1 to the beginning of
snapshot 0.
Then, NOVA-Fortis starts a background thread that com-

pacts the combined manifest by discarding all the manifest
entries that cover one part of the file except the most recent

482

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

File log

addr File write entryaddr File write entry Snapshot IDSnapshot IDSnapshot entry Data in snapshot Reclaimed data Current data

Snapshot 1 manifest

[1, 2)[1, 2)

Snapshot 0 manifest

[0, 1)[0, 1)

Snapshot 0 manifest

[0, 1)[0, 1) [0, 2)[0, 2)

(a) write(0, 4K); write(4K, 4K); (b) take_snapshot(); write(0, 4K); (c) take_snapshot(); write(0, 4K); write(4K, 4K);

(d) delete_snapshot(0); (e) After garbage collection

Snapshot 0Snapshot 0 Snapshot 1Snapshot 1 Snapshot 2Snapshot 2

Dead snapshot entry

File log

0 4K0 4K

Data

0 4K

Data

0 00 0

Data

0 0

Data

0 4K0 4K

Data

0 4K

Data

0 00 0

Data

0 0

Data

1 01 0

Data

1 0

Data

0 4K0 4K

Data

0 4K

Data

0 00 0

Data

0 0

Data

1 01 0

Data

1 0

Data

2 02 0

Data

2 0

Data

2 4K2 4K

Data

2 4K

Data

[1, 2)[1, 2)

Snapshot 1 manifest

[0, 1)[0, 1) [0, 2)[0, 2) Snapshot 2Snapshot 2

0 4K0 4K

Data

0 4K

Data

0 00 0

Data

0 0

Data

1 01 0

Data

1 0

Data

2 02 0

Data

2 0

Data

2 4K2 4K

Data

2 4K

Data

[1, 2)[1, 2)

Snapshot 1 manifest

[0, 2)[0, 2) Snapshot 2Snapshot 2

0 4K0 4K

Data

0 4K

Data

0 00 00 0 1 01 0

Data

1 0

Data

2 02 0

Data

2 0

Data

2 4K2 4K

Data

2 4K

Data

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 2: Snapshots in NOVA-Fortis – NOVA-Fortis stores the current snapshot ID in each log entry, and takes a
snapshot by incrementing the snapshot ID. When a data block or log entry becomes dead in the current snapshot,
NOVA-Fortis records its death in the snapshot manifest for most recent snapshot it survives in. To delete a snap-
shot, NOVA-Fortis adds the manifest for the deleted snapshot to the manifest for the next snapshot and removes
redundant entries.

(Step 5). As it discards the manifest entries, it marks the cor-
responding log entries as dead and reclaims the associated
file data (Step 6). Finally, (e) shows the file system state after
manifest compaction is complete.
NOVA-Fortis keeps the list of live snapshots in NVMM,

but it keeps the contents of the manifests in DRAM. On a
clean shutdown, it writes the manifests to NVMM in the
recovery inode. After an unclean shutdown, NOVA-Fortis
can reconstruct the manifests while it scans the inode logs
during recovery.

3.3 Snapshots for DAX mmap()’d Files
Taking consistent snapshots while applications are modi-
fying files using DAX-style mmap requires NOVA-Fortis to
reckon with the order in which stores to NVMM become
persistent (i.e., reach physical NVMM so they will survive a
system failure). These applications rely on the processor’s
“memory persistence model” [41] to make guarantees about
when and in what order stores become persistent, allowing
them to restore their data to a consistent state when the
application restarts after a system failure.

From the application’s perspective, reading a snapshot is
equivalent to recovering from a system failure. In both cases,
the contents of the memory-mapped file reflect its state at a

moment when application operations might be in-flight and
when the application had no chance to shut down cleanly.

A naive approach to checkpointing mmap()’d files inNOVA-
Fortis would simply mark each of the read/write mapped
pages as read-only and then do copy-on-write when a store
occurs to preserve the old pages as part of the snapshot.
However, this approach can leave the snapshot in an in-

consistent state: Setting the page to read-only captures its
contents for the snapshot, and the kernel requires NOVA-
Fortis to set the pages as read-only one at a time. If the order
in which NOVA-Fortis marks pages as read-only is incompat-
ible with ordering that the application requires, the snapshot
will contain an inconsistent version of the file.

Consider an example with a data valueD, and a flagV that
is True when D contains valid data. To store data in D while
enforcing this invariant, a thread could issue a persist barrier
between the stores to D and V . Assume D and V reside in
different pages, and initially V is False.
If NOVA-Fortis marks D’s page as read-only before the

program updates D, and marks V ’s page as read-only after
the program updates V , the snapshot has V equal to True,
but D with its old, incorrect value.
Figure 3 illustrates how we resolve the problem: When

NOVA-Fortis starts marking pages as read-only in (a), it

483

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

(a)

 D:

V: F

0

Read/Write Read-Only,
page fault waiting

Page
Fault CoW

Value
Change

Pages state in time

Snapshot starts,
D marked read-only

Read-Only

D's page fault waiting

Snapshot completes

V marked read-only

D copy-on-write

V page fault,
copy-on-write

Snapshot
state

D:

V:

0

D:

V:

0

D:

V:

0

D:

V:

0

D:

V:

0

F

F

FT

D:

V: F

(b)

0

D = 1

D:

V: F

(c)

0

D = 1

D:

V: F

(d)

0

D = 1

1

D:

V: F

(e)

0

V = T

1

Figure 3: Snapshots of mmap()’d data – NOVA-Fortis
marks mmap()’d pages as read-only to capture their
contents in the snapshot. To preserve the application’s
constraints on when stores become persistent (here,
that the assignment to V follow the assignment to D),
it prevents pages faults to read-only pages from com-
pleting until it can mark all the pages read-only.

blocks page faults on read-only mmap()’d pages from com-
pleting until it has marked all the mmap()’d pages read-only.
D’s page fault in (b) will not complete (and the store to V
will not occur) until all the pages (including V ’s) have been
marked read-only and the snapshot is complete in (c). Then
NOVA-Fortis allows the copy-on-write for D’s page to pro-
ceed, allowing the modification of D to complete in (d). Since
the assignment toV occurs after the assignment to D in pro-
gram order, the copy-on-write and modification to V in (e)
will occur after creating a consistent snapshot.

This solution is also correct for multi-threaded programs.
If thread 1 updates D and, later, thread 2 should update V ,
the threads must use some synchronization primitive to en-
force that ordering. For instance, thread 1 may release a lock
after storing to D. If D’s page is marked read-only before D
changes, the unlock will not occur until the kernel marks all

Application Workload size Max manifest size
Fileserver 13 GB 3.6 MB
Varmail 4 GB 2 MB
Redis 4 GB 1.1 MB
TPCC 8.5 GB 3.1 MB
ctree 10 GB 3.3 MB

Table 1: Snapshot manifest size – The size of snap-
shot manifest is proportional to the size of changes
between snapshots.

the mmap()’d pages read-only, ensuring that the store to V
will not appear in the snapshot.

This approach guarantees that, for each thread, the snap-
shot will reflect a prefix of the program order-based sequence
of NVMM store operations the thread has performed. This
model is equivalent to strict persistence [41], the most re-
strictive model for how NVMM memory operations should
behave (i.e., in what order updates can become persistent)
in a multi-processor system. CPUs may implement more ag-
gressive, relaxed models for memory persistence, but strict
persistence is strictly more conservative than all proposed
models, so NOVA-Fortis’ approach is correct under those
models as well 2.

3.4 Design Decisions and Evaluation
There are several ways we could have addressed the prob-
lems of creating snapshots, managing the data they contain,
and correctly capturing mmap()’d data. Our approach stores
snapshot manifests in DRAM. The size of snapshot manifest
is proportional to the changes between snapshots, and each
data block and log entry is referred to by at most one snap-
shot manifest. In the worst case the snapshot manifest size
is proportional to the size of the live data in file system, this
happens when the user takes a snapshot and then modifies
the entire file system.
In practice, the size of the manifests is manageable. We

ran the fileserver workloads described in Section 5 and the
WHISPER [39] workloads while taking snapshots every 10
seconds. WHISPER is a suite of eight applications that use
DAX mmap() for data access. Table 1 shows the results. The
size of the manifests ranged from 0.027% to 0.05% of the space
in use in the file system.

Taking snapshots has different effects on the performance
of applications that use file-based access and those that use
DAX-style mmap(). Figure 4 measures the impact on both
2This is directly analogous to sequential memory consistency being a valid
implementation of any more relaxed memory consistency model. Strict
persistence is a natural extension of sequential consistency to include a
notion of persistence.

484

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

Figure 4: Snapshot performance impact – For file-based application (“Filebench”), taking a snapshot every 10 s
reduces performance by just 0.6% on average. WHISPER applications that use DAX-mmap() see a larger drop: 3.7%
on average.

Figure 5: Snapshot operation latency – The time required to mark pages read-only during snapshot creation is
proportional to the number of write-faulted pages (300 in this example) in the DAX mmap()’d regions.

groups. On the right, it shows results for the WHISPER ap-
plications. On the left are results for four Filebench [57]
workloads.

For all the applications, the figure compares performance
without snapshots to performance while running for 1 to
5 minutes and taking a snapshot every 10 seconds. For the
WHISPER applications that use DAX mmap(), taking periodic
snapshots only reduces performance by 3.7% on average. For
file-based filebenchworkloads, the impact is negligible – 0.6%
on average.

Figure 5 shows the latency of snapshot operations. For file-
based applications, snapshot creation takes constant time.
For DAX mmap() applications, the time to mark mmap()’d
regions as read-only is proportional to the number of write-
faulted pages, and each page takes about 10 ns. Snapshot
deletion always takes constant time, since it only needs to
combine the deleted snapshot’s manifest with the next snap-
shot’s manifest and then perform stale data reclamation in
the background. The background thread takes about 400 ns
to reclaim 4 KB data. A copy-on-write page fault takes 2 µs:
1.8 µs for copying data to new page and 200 ns to update the
page table.

4 HANDLING DATA CORRUPTION IN
NOVA-FORTIS

Like all storagemedia, NVMM is subject to data andmetadata
corruption from media failures and software bugs. To pre-
vent, detect, and recover from data corruption, NOVA-Fortis
relies on the capabilities of the system hardware and operat-
ing system as well as its own error detection and recovery
mechanisms.
This section describes the interfaces that NOVA-Fortis

expects from the memory system hardware and the OS and
how it leverages them to detect and recover from corruption.
We also discuss a technique that prevents data corruption in
many cases and NOVA-Fortis’ ability to trade reliability for
performance. Finally, we discuss NOVA-Fortis’ protection
mechanisms in the context of recent work on file system
reliability.

485

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

Primary allocation

SB
Replica

SB

csum
Replica

csum
parity inode

Replica

inode
log & data

Replica

log
DZ

Replica allocation

NVMMNVMM

CPU 0CPU 0 CPU 1CPU 1 CPU nCPU n......CPU 0 CPU 1 CPU n...

Figure 6: NOVA-Fortis space layout – NOVA-Fortis’
per-core allocators satisfy requests for primary and
replica storage from different directions. They also
store data pages and their checksum and parity pages
separately. The “dead zone” (DZ) for metadata alloca-
tion guarantees a gap between primary and replica
pages.

4.1 Detecting and Correcting Media Errors
NOVA-Fortis detects NVMM media errors with the same
mechanisms that processors provide to detect DRAM er-
rors. The details of these mechanisms determine how NOVA-
Fortis and other NVMM file systems can protect themselves
from media errors.

This section describes the interface that recent Linux ker-
nels (e.g., Linux 4.10) and Intel processors provide via the
PMEM low-level NVDIMM driver. Porting NOVA-Fortis to
other architectures or operating systems may require NOVA-
Fortis to adopt a different approach to error detection.

NOVA-Fortis assumes the memory system provides ECC
for NVMM that is similar to (or perhaps stronger than) the
single-error-correction/double-error-detection (SEC-DED)
scheme that conventional DRAM uses. We assume the con-
troller transparently corrects correctable errors, and silently
returns invalid data for undetectable errors.
For detectable but uncorrectable errors, Intel’s Machine

Check Architecture (MCA) [23] raises a machine check ex-
ception (MCE) in response to uncorrectable memory errors.
After the exception, MCA registers hold information that al-
lows the OS to identify the memory address and instruction
responsible for the exception.
The default response to an MCE in the kernel is a kernel

panic. However, recent Linux kernels include a version of
memcpy(), called memcpy_mcsafe(), that returns an error to
the caller instead of crashing in response to memory-error-
induced MCEs, and allows the kernel software to recover
from the exception. NOVA-Fortis always uses this function
when reading from NVMM and checks its return code to
detect uncorrectable media errors. Intel processors do not
provide a mechanism for detecting store failures, and the
memory controller transparently maps around faulty cells.

In rare cases (e.g., an MCE occurring during a page fault),
MCEs are not recoverable, and a kernel panic is inevitable.
When the processor hardware detects an uncorrectable

media error, it “poisons” a contiguous region of physical
addresses. The size of this region is the poison radius (PR) of
a media error. We assume PRs are a power of two in size and
aligned to that size. Loads to poisoned addresses cause an
MCE, and all the data in the PR is lost. The poisoned status
of a PR persists across system failures and the PMEM driver
collects a list of poisoned PRs at boot. On Intel processors
the poison radius is 64 bytes (one cache line), but after boot,
Linux reports poisoned regions at 512-byte granularity, so
NOVA-Fortis uses 512-byte.
We also assume that NVMM platforms will allow sys-

tem software to clear a poisoned PR to make the address
range usable again. Intel processors provide this capability
via the “Clear Uncorrectable Error” command that is part
of the Advanced Configuration and Power Interface (ACPI)
specification [59].

4.2 Tick-Tock Metadata Protection
NOVA-Fortis protects its metadata by keeping two copies
of each structure – a primary and a replica – and adding a
CRC32 checksum to both.

To update a metadata structure, NOVA-Fortis first copies
the contents of the data structure into the primary (the tick),
and issues a persist barrier to ensure that data is written to
NVMM. Then it does the same for the replica (the tock). This
scheme ensures that, at any moment, at least one of the two
copies is correctly updated and has a consistent checksum.

To reliably access ametadata structure NOVA-Fortis copies
the primary and replica into DRAM buffers using memcpy_
mcsafe() to detect media errors. If it finds none, it verifies
the checksums for both copies. If it detects that one copy
is corrupt due to a media error or checksum mismatch, it
restores it by copying the other. If both copies are error free
but not identical, the system failed between the tick and tock
phases of a previous update, and NOVA-Fortis copies the
primary to the replica, effectively completing the interrupted
update. If both copies are corrupt, the metadata is lost, and
NOVA-Fortis returns an error.

4.3 Protecting File Data
NOVA-Fortis adopts RAID-4 parity protection and check-
sums to protect file data and it includes features to maximize
protection for files that applications access data via DAX-
style mmap().
RAID Parity and Checksums NOVA-Fortis treats each
4 KB file page as a stripe, and divides it into PR-sized (or
larger) stripe segments, or strips.

486

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

NOVA-Fortis stores a parity strip for each file page in a
reserved region of NVMM. It also stores two copies of a
CRC32 checksum for each data strip in separate reserved
regions. Figure 6 shows the checksum and parity layouts in
the NVMM.
When NOVA-Fortis performs a read, it first copies each

strip of data into DRAM using memcpy_mcsafe(), and cal-
culates its checksum. If this checksum matches either stored
copy of the checksum, NOVA-Fortis concludes the file data
is correct and updates the mismatched copy of the checksum
if needed.

If neither of the checksums match the read data or a media
error occurs, NOVA-Fortis attempts to restore the strip using
RAID-4 parity, and uses the strip’s checksum to determine
if the recovery succeeded. If no other strip in the page is
corrupt, recovery will succeed and NOVA-Fortis restores
the target strip and its checksums. If more than one strip is
corrupt, the file page is lost and the read fails.

Writes and atomic parity updates are simple since NOVA-
Fortis uses copy-on-write for data: For each file page write,
NOVA-Fortis allocates new pages, populates them with the
written data, computes the checksums and parity, and finally
commits the write with an atomic log appending operation.

Caveat DAXor: Protecting DAX-mmap’d Data By de-
sign, DAX-style mmap() lets application modify file data
without involving the file system, so it is impossible for
NOVA-Fortis to keep the checksums and parity for read/write
mapped pages up-to-date. Instead, NOVA-Fortis follows the
caveat DAXor principle and provides the following guaran-
tee: The checksums and parity for data pages are up-to-date
at all times, except when those pages are mapped read/write
into an application’s address space.
We believe this is the strongest guarantee that NOVA-

Fortis can provide on current hardware, and it raises several
challenges. First users that use DAX-mmap() take on respon-
sibility for detecting and recovering from both media errors
(which appear as SIGBUS in user space) and scribbles. This is
an interesting challenge but beyond the scope of this paper.
Second, NOVA-Fortis must be able to tell when a data page’s
checksums and parity should match the data it contains and
when they might not.

To accomplish this, when a portion a file is mmap()’d,
NOVA-Fortis records this fact in the file’s log, signifying
that the checksums and parity for the affected pages are no
longer valid. NOVA-Fortis only recomputes the checksums
and parity for dirty pages on msync() and munmap(). On
munmap(), it adds a log entry that restores protection for
these pages when the last mapping for the page is removed.
If the system crashes while pages are mapped, the recovery
process will identify these pages while scanning the logs,

recompute checksums and parity, and add a log entry to
mark them as valid.
Design Decisions and Alternatives Using RAID parity
and checksums to protect file data is similar to the approach
that ZFS [8] and IRON ext3 [43] take, but we store parity for
each page rather than one parity page per file [43], and we
maintain per-strip checksums instead of a single checksum
for a whole stripe [8].

NOVA-Fortis chooses RAID-4 over RAID-5 because RAID-
5 intermingles parity and data and would make DAX mmap()
impossible since parity bits would end up in the application’s
address space.

Alternately, NOVA-Fortis could rely on RAIM [33], Chip-
kill [21], or other advanced ECC mechanisms to protect file
data. These techniques would improve reliability, but they
are not universally available and cannot protect against scrib-
bles.

4.4 Minimizing Vulnerability to Scribbles
Scribbles pose significant risk to NOVA-Fortis’ data andmeta-
data, since a scribble can impact large, continuous regions
of memory. We are not aware of any systematic study of
the prevalence of these errors, but scribbles, lost, and misdi-
rected writes are well-known culprits for file system corrup-
tion [19, 31, 66]. In practice, we expect that smaller scribbles
are more likely than larger ones, in part since the bugs that
result in larger scribbles would be more severe and more
likely to be found and fixed.

To quantify the risk that these errors pose, we define bytes-
at-risk (BAR) for a scribble as the number of bytes it may
render irretrievable.

NOVA-Fortis packs log entries in to log pages, and it must
scan the page to recognize each entry. Without protection,
losing a single byte can corrupt a whole page. For replicated
log pages, a scribble that spans both copies of a byte will
corrupt the page. To measure the BAR for a scribble of size
N we measure the number of pages each possible N -byte
scribble would destroy in an aged NOVA-Fortis file system.

Figure 7 shows the maximum and average metadata BAR
for a 64 GB NOVA-Fortis file system with four protection
schemes for metadata: “no replication” does not replicate
metadata; “simple replication” allocates the primary and
replicas naively and tends to allocate lower addresses before
higher address, so the primary and replica are often close;
“two-way replication” separates the primary and replica by
preferring low addresses for the primary and high addresses
for the replica; and “dead-zone replication” extends “two-
way” by enforcing a 1 MB “dead zone” between the primary
and replica. The dead zone can store file data but not meta-
data. The more separation the allocator provides, the less
likely a scribble will corrupt a pair of mirrored metadata

487

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

Figure 7: Scribble size and metadata bytes at risk – Replicating metadata pages and taking care to allocate the
replicas separately improves resilience to scribbles. The most effective technique enforces a 1 MB “dead zone”
between replicas and eliminates the threat of a single scribble smaller than 1 MB. The graph omits zero values
due to the vertical log scale.

pages. Figure 6 shows an example of NOVA-Fortis two-way
allocator with dead zone separation. For each pair of mir-
rored pages, the dead zone forbids the primary and replica
from becoming too close, but data pages can reside between
them.
To stress the allocator’s ability to place the primary and

replica far apart, we aged the file system by spawning multi-
ple, multi-threaded, Filebench workloads. When each work-
load finishes, we remove about half of its files, and then
restart the workload. We continue until the file system is
99% full.
The data show that even for the smallest 1-byte scribble,

the unprotected version will lose up to a whole page (4 KB)
of metadata and an average of 0.06 pages. With simple repli-
cation, scribbles smaller than 4 KB have zero BAR. Under
simple replication, an 8 KB scribble can corrupt up to 4 KB,
but affects only 0.04 pages on average.
Two-way replication tries to allocate the primary and

replica farther apart, and it reduces the average bytes at risk
with an 8 KB scribble to 2.9 × 10−5 pages, but the worst case
remains the same because the allocator’s options are limited
when space is scarce.

Enforcing the dead zone further improves protection: A
1 MB dead zone can eliminate metadata corruption for scrib-
bles smaller than 1 MB. The dead zone size is configurable,
so NOVA-Fortis can increase the 1 MB threshold for scribble
vulnerability if larger scribbles are a concern.

Scribbles also place data pages at risk. Since NOVA-Fortis
stores the strips of data pages contiguously, scribbles that are
larger than the strip size may causes data loss, but smaller
scribbles do not. NOVA-Fortis could tolerate larger scribbles

to data pages by interleaving strips from different pages, but
this would disallow DAX-style mmap(). Increasing the strip
size can also improve scribble tolerance, but at the cost of
increased storage overhead for the parity strip.

4.5 Preventing Scribbles
The mechanisms described above let NOVA-Fortis detect and
recover from data corruption. NOVA-Fortis can borrow a
technique from WAFL [31] and PMFS [15] to prevent scrib-
bles by marking all of NVMM as read-only and then clearing
Intel’s WriteProtect Enable (WP) bit to disable all write pro-
tection when NOVA-Fortis needs to modify NVMM. Clearing
and re-setting the bit takes ∼400 ns on our systems.
The WP approach only protects against scribbles from

other kernel code. It cannot prevent NOVA-Fortis from cor-
rupting its own data by performing “misdirected writes,” a
common source of data corruption in file systems [5].

4.6 Relaxing Data and Metadata Protection
Many existing file systems can trade off reliability for im-
proved performance (e.g., the data journaling option in Ext4).
NOVA-Fortis can do the same: It provides a relaxed mode
that relaxes atomicity constraints on file data and metadata.
In relaxed mode, write operations modify existing data

directly rather than using copy-on-write, and metadata oper-
ations modify the most recent log entry for an inode directly
rather than appending a new entry. Relaxed mode guaran-
tees metadata atomicity by journaling the modified pieces
of metadata. These changes improve performance and we
evaluate their impact in Section 5.

488

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

4.7 Protecting DRAM Data Structures
Corruption of DRAM data structures can result in file system
corruption [13, 66], and NOVA-Fortis protects most of its
critical DRAM data structures with checksums. Most DRAM
structures that NOVA-Fortis does not protect are short lived
(e.g., the DRAM copies we create of metadata structures)
or are not written back to NVMM. However, the snapshot
logs and allocator state are exceptions and they are vulner-
able to corruption. The allocator protects the address and
length of each free region with checksums, but it does not
protect the pointers that make up the red-black tree that
holds them, since we use the kernel’s generic red-black tree
implementation.

4.8 Related and Future Work
Below, we describe proposed “best practices” for file sys-
tem design and how NOVA-Fortis addresses them. Then, we
describe areas of potential improvement for NOVA-Fortis.

4.8.1 Is NOVA-Fortis Ferrous? InteRnally cONistent (IRON)
file systems [43] provide a set of principles to that lead to
improved reliability. We designed NOVA-Fortis to embody
these principles:
Check error codes Uncorrectable ECC errors are the
only errors that the NVMM memory system delivers to soft-
ware (i.e., via MCEs). NOVA-Fortis uses memcpy_mcsafe()
for all NVMM loads and triggers recovery if it detects an
MCE. NOVA-Fortis also interacts with the PMEM driver that
provides low-level management of NVDIMMs. For these
calls, we check and respond to error codes appropriately.
Report errors and limit the scope of failures NOVA-
Fortis reports all unrecoverable errors as EIO rather than
calling panic().
Use redundancy for integrity checks and distribute re-
dundancy information NOVA-Fortis’ tick-tock replica-
tion scheme stores the checksum for each replica with the
replica, but it is careful to allocate the primary and replica
copies far from one another. Likewise, NOVA-Fortis stores
the parity and checksum information for data pages sepa-
rately from the pages themselves.
Type-aware fault injection For testing, we built a NOVA-
Fortis-specific error injection tool that can corrupt data and
metadata structures in specific, targeted ways, allowing us
to test NOVA-Fortis’ detection and recovery mechanisms.

4.8.2 Areas for Improvement. There are several additional
steps NOVA-Fortis could take to further improve reliability.
We do not expect any of them to have a large impact on
performance or storage overheads.
Sector or block failures in disks are not randomly dis-

tributed [3], and errors in NVMM are also likely to exhibit

complex patterns of locality [35, 54, 55]. For instance, an
NVMM chip may suffer from a faulty bank, row, or column,
leading to a non-uniform error distribution. Or, an entire
NVDIMM may fail.

NOVA-Fortis’ allocator actively separates the primary and
replica copies of metadata structures to eliminate logical
locality, but it does not account for how the memory system
maps physical addresses onto the physical memory. A layout-
aware allocator could, for instance, ensure that replicas reside
in different banks or different NVDIMMs.

NOVA-Fortis cannot keep running after an unrecoverable
MCE (since they cause a panic()), but it could recover any
corrupted data during recovery. The PMEM driver provides
a list of poisoned PRs on boot, and NOVA-Fortis can use this
information to locate and recover corrupted file data during
mount. Without this step, NOVA-Fortis will still detect poi-
soned metadata, since reading from a poisoned PR results in
a recoverable MCE, and NOVA-Fortis reads all metadata dur-
ing recovery. Poisoned file data, however, could accumulate
over multiple unrecoverable MCEs, increasing the chances
of data loss.
Finally, NOVA-Fortis does not scrub data or metadata.

PMEM detects media errors on reboot, but if a NOVA-Fortis
file system ran continuously for a long time, undetected
media errors could accumulate. Undetected scribbles to data
and metadata can accumulate during normal operation and
across reboots.

5 PERFORMANCE TRADE-OFFS
NOVA-Fortis’ reliability features improve its resilience but
also incur overhead in terms of performance and storage
space. This section quantifies these overheads and explores
the trade-offs they allow.

5.1 Experimental Setup
We implemented NOVA-Fortis for Linux 4.10, and the source
code is available at https://github.com/NVSL/linux-nova.
We use the Intel Persistent Memory Emulation Platform

(PMEP) [15] to emulate different types of NVMM and study
their effects on NVMM file systems. PMEP supports config-
urable latencies and bandwidth for the emulated NVMM,
and emulates clwb instruction with microcode. In our tests
we configure the PMEP with 32 GB of DRAM and 64 GB of
NVMM, and choose two configurations for PMEP’s memory
emulation system: We use the same read latency and band-
width as DRAM to emulate fast NVDIMM-N [48], and set
read latency to 300 ns and reduce the write bandwidth to
1/8th of DRAM to emulate slower PCM. For both configura-
tions we set clwb instruction latency to 40 ns.
We compare NOVA-Fortis against five other file systems.

Ext4-DAX, xfs-DAX and PMFS are the three DAX-enabled

489

https://github.com/NVSL/linux-nova

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

Figure 8: File operation latency – NOVA-Fortis’ basic file operations are faster than competing file systems ex-
cept in cases where the other file system provides weaker consistency guarantees and/or data protection (e.g.,
writes and overwrites vs. Ext4-DAX and xfs-DAX). Sacrificing these protections in NOVA-Fortis (“Relaxed mode”)
improves performance.

Figure 9: NOVA-Fortis random read/write bandwidth on NVDIMM-N – Read bandwidth is similar across all the
file systems except Btrfs, and NOVA-Fortis’ reliability mechanisms reduces its throughput by between 14% and
19%. For writes the cost of reliability is higher – up to 66%, but still outperforms Btrfs by 33× with 16 threads.

file systems. None of them provides strong consistency guar-
antees (i.e., they do not guarantee that all operations are
atomic), while NOVA does provide these guarantees. To
compare to a file system with stronger guarantees, we also
compare to ext4 in data journaling mode (ext4-dataj) and
Btrfs running on the NVMM-based block device. Ext4 and xfs
keep checksums for metadata, but they do not provide any
recovery mechanisms for NVMM media errors or protection
against stray writes.

5.2 Performance Impacts
To understand the impact of NOVA-Fortis’ reliability mecha-
nisms, we begin by measuring the performance of individual
mechanisms and basic file operations. Then wemeasure their
impact on application-level performance.

We compare several version of NOVA-Fortis:We start with
our baseline, NOVA, and add metadata protection (“MP”),
data protection (“DP”), and write protection (“WP”). “Re-
laxed mode” weakens consistency guarantees to improve
performance and provides no data protection (Section 4.6).

490

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

Metadata Protection Data Protection Write Protection

Figure 10: NOVA-Fortis latencies for NVDIMM-N – Protecting file data is usually more expensive than protecting
metadata because the cost of computing checksums and parity for data scales with access size.

5.3 Microbenchmarks
Weevaluate basic file system operations: create, 4 KB append,
4 KB write, 512 B write, and 4 KB read. Figure 8 measures
the latency for these operations with NVDIMM-N configu-
ration. Data for PCM has similar trends.

Create is a metadata-only operation. NOVA is 1.9× to 5×
faster than the existing file systems, and adding metadata
protection increases the latency by 47% compared to the
baseline. Append affects metadata and data updates. Adding
metadata and data protection increase the latency by 36% and
100%, respectively, and write protection increases the latency
by an additional 22%. NOVA-Fortis with full protection (i.e.,
“w/ MP+DP+WP”) is 59% slower than NOVA.

For overwrite, NOVA-Fortis performs copy-on-write for
file data to provide data atomicity guarantees, and the latency
is close to that of append. For 512 B overwrite, NOVA-Fortis
has longer latency than other DAX file systems since its
requires reading and writing 4 KB. Full protection increases
the latency by 2.2×. Relaxed mode is 3.8× faster than NOVA
since it performs in-place updates. For read operations, data
protection adds 70% overhead because it verifies the data
checksum before returning to the user.
Figure 10 breaks down the latency for NOVA-Fortis and

its reliability mechanisms. For create, inode allocation and
appending to the log combine to consume 48% of latency, due
to inode/log replication and checksum calculation. For 4 KB
append and overwrite, data protection has almost the same
latency as memory copy (memcpy_nocache), and it accounts
for 31% of the total latency in 512 B overwrite.

Figure 9 shows FIO [1]measurements for themulti-threaded
read/write bandwidth of the file systems. For writes, NOVA-
Fortis’ relaxed mode achieves the highest bandwidth. With
sixteen threads, metadata protection reduces NOVA-Fortis
bandwidth by 24% compared to the baseline, data protection
reduces throughtput by 37%, and enabling all of NOVA-Fortis’
protection features reduces bandwidth by 66%. For reads, all
the file systems scale well except Btrfs, while NOVA-Fortis
data protection incurs 14% overhead on 16 threads, due to
checksum verification.

5.4 Macrobenchmarks
We use nine application-level workloads to evaluate NOVA-
Fortis: Four Filebench [57] workloads (fileserver, varmail,
webproxy, andwebserver), two key-value stores (RocksDB [17]
and MongoDB [38]), the Exim email server [16], SQLite [53],
and TPC-C running on Shore-MT [27]. Fileserver, varmail,
webproxy and Exim are metadata-intensive workloads, while
other workloads are data-intensive. Table 2 summarizes the
workloads.

Figure 11 measures their performance on our five compar-
ison file systems and several NOVA-Fortis configurations,
normalized to the NOVA throughput on NVDIMM-N. NOVA-
Fortis outperforms xfs-DAX and ext4-DAX by between 3%
and 4.4×. PMFS shows similar performance to NOVA on data-
intensive workloads, but NOVA-Fortis outperforms it by a
wide margin (up to 350×) on metadata-intensive workloads.
Btrfs provides reliability features similar to NOVA-Fortis’,
but it is slower: NOVA-Fortis with all its protection features

491

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

Figure 11: Application performance on NOVA-Fortis – Reliability overheads and the benefits of relaxed mode
have less impact on applications thanmicrobenchmarks (Figures 8 and 9). The change is especially small for read-
intensive workloads (e.g., web-proxy), while databases and key-value stores see greater differences. The numbers
above the bars measure NOVA throughput in operations per second.

Application Data size Notes
Filebench-fileserver 64 GB R/W ratio: 1:2
Filebench-varmail 32 GB R/W ratio: 1:1
Filebench-webproxy 32 GB R/W ratio: 5:1
Filebench-webserver 32 GB R/W ratio: 10:1
RocksDB 8 GB db_bench’s overwrite test
MongoDB 10 GB YCSB’s 50/50-read/write
Exim 4 GB Mail server
SQLite 400 MB Insert operation
TPC-C 26 GB The ’Payment’ query

Table 2: Application benchmarks

enabled outperforms it by between 26% and 42×. NOVA-
Fortis achieves larger improvement on metadata-intensive
workloads, such as varmail and Exim.

Adding metadata protection reduces performance by be-
tween 0 and 9% and using the WP bit costs an additional
0.1% to 13.4%. Enabling all protection features reduces perfor-
mance by between 2% and 38%, with write-intensive work-
loads seeing the larger drops. The figure also shows that the
performance benefits of giving up atomicity in file operations
(“Relaxed mode”) are modest – no more than 6.4%.

RocksDB sees the biggest performance loss with NOVA-
Fortis with all protections enabled because it issues many

non-page-aligned writes that result in extra reads, writes,
and checksum calculation during copy-on-write. Relaxed
mode avoids these overheads, so it improves performance
for RocksDB more than for other workloads.

For the PCM configuration, fileserver, webserver and Rocks-
DB show the largest performance drop compared toNVDIMM-
N. Fileserver and RocksDB are write-intensive and saturate
PCM’s write bandwidth. Webserver is read-intensive and
PCM’s read latency limits performance. Btrfs outperforms
other DAX file systems on Rocks-DB because this workload
does not call fsync frequently, allowing it to leverage the
page cache.

Compared to other file systems, NOVA-Fortis is more sen-
sitive to NVMM performance, because it has lower software
overhead and reveals the underlying NVMM performance
more directly. Overall, NOVA outperforms other DAX file
systems by 1.75× on average, and adding full protection
reduces performance by 12% on average compared to NOVA.

5.5 NVMM Storage Utilization
Protecting data integrity introduces storage overheads. Fig-
ure 12 shows the breakdown of space among (meta)data
structures in an aged, 64 GB NOVA-Fortis file system. Over-
all, NOVA-Fortis devotes 14.8% of storage space to improving

492

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

File parity: 11.1%

File data: 82.4%

File checksum: 1.56%

Replica log: 2.0%

Replica inode: 0.1%

Unused: 0.75%

Primary inode: 0.1%

Primary log: 2.0%

Figure 12: NVMM storage utilization – Extra storage
required for reliability is highlighted to the right. Pro-
tecting data is more expensive that protecting meta-
data, consuming 12.7% of storage compared to just
2.1% for metadata.

reliability. Of this, metadata redundancy accounts for 2.1%
and data redundancy occupies 12.7%.

6 CONCLUSION
We have used NOVA-Fortis to explore the unique challenges
that improving NVMM file system reliability presents. The
solutions that NOVA-Fortis implements facilitate backups by
taking consistent snapshots of the file system and provide
significant protection against media errors and corruption
due to software errors.

The extra storage required to implement these changes is
modest, but their performance impact is significant for some
applications. In particular, the cost of checking and main-
taining checksums and parity for file data incurs a steep cost
for both reads and writes, despite our use of very fast (XOR
parity) and hardware accelerated (CRC) mechanisms. Pro-
viding atomicity for unaligned writes is also a performance
bottleneck.
These costs suggest that NVMM file systems should pro-

vide users with a range of protection options that trade off
performance against the level of protection and consistency.
For instance, NOVA-Fortis can selectively disable checksum
based file data protection and the write protection mecha-
nism. Relaxed mode disables copy-on-write.
Making these policy decisions rationally is currently dif-

ficult due to a lack of two pieces of information. First, the
rate of uncorrectable media errors in emerging NVMM tech-
nologies is not publicly known. Second, the frequency and
size of scribbles has not been studied in detail. Without a
better understanding in these areas, it is hard to determine
whether the costs of these techniques are worth the benefits
they provide.

Despite these uncertainties, NOVA-Fortis demonstrates
that NVMM file system can provide strong reliability guar-
antees while providing high performance and supporting
DAX-style mmap(). It also makes a clear case for developing
special file systems and reliability mechanisms for NVMM
rather than blithely adapting existing schemes: The chal-
lenges NVMMs presents are different, different solutions are
appropriate, and the systems built with these differences in
mind can be very fast and highly reliable.

ACKNOWLEDGMENTS
This work was supported by STARnet, a Semiconductor Re-
search Corporation program, sponsored by MARCO and
DARPA and by Intel Corporation, Toshiba Corporation, and
NSF Award 1629395. We would like to thank our shepherd,
Michael Swift, and the anonymous SOSP reviewers for their
insightful comments and suggestions. We are also thankful
to Subramanya R. Dulloor from Intel for his support and help
with accessing PMEP.

REFERENCES
[1] Jens Axboe. 2017. Flexible I/O Tester. (2017). https://github.

com/axboe/fio.
[2] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M.

Levy. 2011. Operating System Implications of Fast, Cheap, Non-
volatile Memory. In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems (HotOS’13). USENIX As-
sociation, Berkeley, CA, USA, 2–2. http://dl.acm.org/citation.
cfm?id=1991596.1991599

[3] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Garth R. Goodson, and Bianca
Schroeder. 2008. An Analysis of Data Corruption in the Stor-
age Stack. Trans. Storage 4, 3, Article 8 (Nov. 2008), 28 pages.
https://doi.org/10.1145/1416944.1416947

[4] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pa-
supathy, and Jiri Schindler. 2007. An Analysis of Latent Sector
Errors in Disk Drives. In Proceedings of the 2007 ACM SIGMET-
RICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’07). ACM, New York, NY,
USA, 289–300. https://doi.org/10.1145/1254882.1254917

[5] L. N. Bairavasundaram, M. Rungta, N. Agrawa, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. M. Swift. 2008. An-
alyzing the Effects of Disk-Pointer Corruption. In 2008 IEEE
International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN). 502–511. https://doi.org/10.1109/
DSN.2008.4630121

[6] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm.
2012. Implications of CPU Caching on Byte-addressable Non-
volatile Memory Programming. Technical Report. HP Technical
Report HPL-2012-236.

[7] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swan-
son. 2013. Bankshot: Caching Slow Storage in Fast Non-
volatile Memory. In Proceedings of the 1st Workshop on Inter-
actions of NVM/FLASH with Operating Systems and Workloads

493

https://github.com/axboe/fio
https://github.com/axboe/fio
http://dl.acm.org/citation.cfm?id=1991596.1991599
http://dl.acm.org/citation.cfm?id=1991596.1991599
https://doi.org/10.1145/1416944.1416947
https://doi.org/10.1145/1254882.1254917
https://doi.org/10.1109/DSN.2008.4630121
https://doi.org/10.1109/DSN.2008.4630121

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

(INFLOW ’13). ACM, New York, NY, USA, Article 1, 9 pages.
https://doi.org/10.1145/2527792.2527793

[8] Jeff Bonwick and Bill Moore. 2007. ZFS: The Last Word in File
Systems. (2007).

[9] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup
De, Joel Coburn, and Steven Swanson. 2012. Providing safe,
user space access to fast, solid state disks. In Proceedings of the
seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
XVII). ACM, New York, NY, USA, 387–400. https://doi.org/10.
1145/2150976.2151017

[10] Dave Chinner. 2015. xfs: updates for 4.2-rc1. (2015). http:
//oss.sgi.com/archives/xfs/2015-06/msg00478.html.

[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
2011. NV-Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories. In Proceed-
ings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’11). ACM, New York, NY, USA, 105–118. https:
//doi.org/10.1145/1950365.1950380

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost,
Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.
2009. Better I/O through byte-addressable, persistent memory.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles (SOSP ’09). ACM, New York, NY, USA,
133–146. https://doi.org/10.1145/1629575.1629589

[13] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013.
HARDFS: Hardening HDFS with Selective and Lightweight
Versioning. In Presented as part of the 11th USENIX Confer-
ence on File and Storage Technologies (FAST 13). USENIX, San
Jose, CA, 105–118. https://www.usenix.org/conference/fast13/
technical-sessions/presentation/do

[14] Mingkai Dong and Haibo Chen. 2017. Soft Updates Made
Simple and Fast on Non-volatile Memory. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, Santa Clara, CA, 719–731. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/dong

[15] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.
2014. System Software for PersistentMemory. In Proceedings of
the Ninth European Conference on Computer Systems (EuroSys
’14). ACM, New York, NY, USA, Article 15, 15 pages. https:
//doi.org/10.1145/2592798.2592814

[16] Exim 2017. Exim Internet Mailer. (2017). http://www.exim.org.
[17] Facebook. 2017. RocksDB. (2017). http://rocksdb.org.
[18] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K.

Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and
G. Hush. 2014. A 16Gb ReRAM with 200MB/s write and 1GB/s
read in 27nm technology. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014 IEEE International. 338–
339. https://doi.org/10.1109/ISSCC.2014.6757460

[19] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Redun-
dancy Does Not Imply Fault Tolerance: Analysis of Distributed
Storage Reactions to Single Errors and Corruptions. In 15th

USENIX Conference on File and Storage Technologies (FAST 17).
USENIX Association, Santa Clara, CA, 149–166.

[20] Robin Harris. 2016. Windows leaps into the NVM
revolution. (2016). http://www.zdnet.com/article/
windows-leaps-into-the-nvm-revolution/.

[21] IBM. 1999. Chipkill Memory. (1999). http://www-05.ibm.
com/hu/termekismertetok/xseries/dn/chipkill.pdf.

[22] Intel. 2015. NVDIMM Namespace Specification. (2015). http:
//pmem.io/documents/NVDIMM_Namespace_Spec.pdf.

[23] Intel. 2016. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3, Chapter 15. (2016).
https://software.intel.com/sites/default/files/managed/a4/60/
325384-sdm-vol-3abcd.pdf, Version December 2016.

[24] Intel. 2017. Intel Architecture Instruction Set Extensions Pro-
gramming Reference. (2017). https://software.intel.com/sites/
default/files/managed/0d/53/319433-022.pdf.

[25] Intel. 2017. Intel Optane Memory. (2017). http://www.
intel.com/content/www/us/en/architecture-and-technology/
optane-memory.html.

[26] Intel. 2017. Intel ships first Optane memory modules for test-
ing. (2017). http://www.pcworld.com/article/3162177/storage/
intel-ships-first-optane-memory-modules-for-testing.html.

[27] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia
Ailamaki, and Babak Falsafi. 2009. Shore-MT: A Scalable Stor-
age Manager for the Multicore Era. In Proceedings of the 12th
International Conference on Extending Database Technology:
Advances in Database Technology (EDBT ’09). ACM, New York,
NY, USA, 24–35. https://doi.org/10.1145/1516360.1516365

[28] Takayuki Kawahara. 2011. Scalable Spin-Transfer Torque RAM
Technology for Normally-Off Computing. Design & Test of
Computers, IEEE 28, 1 (Jan 2011), 52–63. https://doi.org/10.
1109/MDT.2010.97

[29] Ram Kesavan, Rohit Singh, Travis Grusecki, and Yuvraj Patel.
2017. Algorithms and Data Structures for Efficient Free Space
Reclamation in WAFL. In 15th USENIX Conference on File and
Storage Technologies (FAST 17). USENIX Association.

[30] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu,
P. M. Chen, and T. F. Wenisch. 2016. Delegated Persist Order-
ing. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1–13. https://doi.org/10.1109/
MICRO.2016.7783761

[31] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sum-
ith Makam. 2017. High Performance Metadata In-
tegrity Protection in the WAFL Copy-on-Write File Sys-
tem. In 15th USENIX Conference on File and Storage
Technologies (FAST 17). USENIX Association, Santa Clara,
CA, 197–212. https://www.usenix.org/conference/fast17/
technical-sessions/presentation/kumar

[32] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.
2009. Architecting Phase ChangeMemory as a Scalable DRAM
Alternative. In ISCA ’09: Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture. ACM, New York,
NY, USA, 2–13. https://doi.org/10.1145/1555754.1555758

[33] P. J. Meaney, L. A. Lastras-Montanõ, V. K. Papazova, E.
Stephens, J. S. Johnson, L. C. Alves, J. A. O’Connor, and W. J.
Clarke. 2012. IBM zEnterprise Redundant Array of Indepen-
dent Memory Subsystem. IBM J. Res. Dev. 56, 1 (Jan. 2012),

494

https://doi.org/10.1145/2527792.2527793
https://doi.org/10.1145/2150976.2151017
https://doi.org/10.1145/2150976.2151017
http://oss.sgi.com/archives/xfs/2015-06/msg00478.html
http://oss.sgi.com/archives/xfs/2015-06/msg00478.html
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://www.usenix.org/conference/fast13/technical-sessions/presentation/do
https://www.usenix.org/conference/fast13/technical-sessions/presentation/do
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dong
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dong
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
http://www.exim.org
http://rocksdb.org
https://doi.org/10.1109/ISSCC.2014.6757460
http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
http://www-05.ibm.com/hu/termekismertetok/xseries/dn/chipkill.pdf
http://www-05.ibm.com/hu/termekismertetok/xseries/dn/chipkill.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
http://www.pcworld.com/article/3162177/storage/intel-ships-first-optane-memory-modules-for-testing.html
http://www.pcworld.com/article/3162177/storage/intel-ships-first-optane-memory-modules-for-testing.html
https://doi.org/10.1145/1516360.1516365
https://doi.org/10.1109/MDT.2010.97
https://doi.org/10.1109/MDT.2010.97
https://doi.org/10.1109/MICRO.2016.7783761
https://doi.org/10.1109/MICRO.2016.7783761
https://www.usenix.org/conference/fast17/technical-sessions/presentation/kumar
https://www.usenix.org/conference/fast17/technical-sessions/presentation/kumar
https://doi.org/10.1145/1555754.1555758

SOSP ’17, October 28, 2017, Shanghai, China J. Xu and L. Zhang et al.

43–53. https://doi.org/10.1147/JRD.2011.2177106
[34] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015.

A Large-Scale Study of Flash Memory Failures in the Field.
In Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS ’15). ACM, New York, NY, USA, 177–190.
https://doi.org/10.1145/2745844.2745848

[35] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. 2015. Revisiting Mem-
ory Errors in Large-Scale Production Data Centers: Analysis
and Modeling of New Trends from the Field. In 2015 45th An-
nual IEEE/IFIP International Conference on Dependable Systems
and Networks. 415–426. https://doi.org/10.1109/DSN.2015.57

[36] Micron. 2017. 3D XPoint Technology. (2017).
http://www.micron.com/products/advanced-solutions/
3d-xpoint-technology.

[37] Micron. 2017. Hybrid Memory: Bridging the Gap Between
DRAM Speed and NAND Nonvolatility. (2017). http://www.
micron.com/products/dram-modules/nvdimm.

[38] MongoDB, Inc. 2017. MongoDB. (2017). https://www.
mongodb.com.

[39] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift,
Haris Volos, and Kimberly Keeton. 2017. An Analysis of
Persistent Memory Use with WHISPER. In Proceedings of
the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’17). ACM, New York, NY, USA, 135–148. https:
//doi.org/10.1145/3037697.3037730

[40] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben Cutler,
Jie Liu, Badriddine Khessib, and Kushagra Vaid. 2016. SSD Fail-
ures in Datacenters: What? When? And Why?. In Proceedings
of the 9th ACM International on Systems and Storage Conference
(SYSTOR ’16). ACM, New York, NY, USA, Article 7, 11 pages.
https://doi.org/10.1145/2928275.2928278

[41] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014.
Memory Persistency. In Proceeding of the 41st Annual In-
ternational Symposium on Computer Architecture (ISCA ’14).
IEEE Press, Piscataway, NJ, USA, 265–276. http://dl.acm.org/
citation.cfm?id=2665671.2665712

[42] pmem.io. 2017. NVM Library. (2017). http://pmem.io/nvml.
[43] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin

Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2005. IRON File Systems. In
The ACM Symposium on Operating Systems Principles (SOSP).
ACM.

[44] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen,
R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H. L Lung, and
C.H. Lam. 2008. Phase-change Random Access Memory: A
Scalable Technology. IBM Journal of Research and Development
52, 4.5 (July 2008), 465–479. https://doi.org/10.1147/rd.524.
0465

[45] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The
Linux B-Tree Filesystem. Trans. Storage 9, 3, Article 9 (Aug.
2013), 32 pages. https://doi.org/10.1145/2501620.2501623

[46] Mendel Rosenblum and John K. Ousterhout. 1991. The De-
sign and Implementation of a Log-structured File System. In
Proceedings of the Thirteenth ACM Symposium on Operating

Systems Principles (SOSP ’91). ACM, New York, NY, USA, 1–15.
https://doi.org/10.1145/121132.121137

[47] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. 2014. Log-structured Memory for DRAM-based
Storage. In Proceedings of the 12th USENIX Conference on
File and Storage Technologies (FAST ’14). USENIX, Santa
Clara, CA, 1–16. https://www.usenix.org/conference/fast14/
technical-sessions/presentation/rumble

[48] Arthur Sainio. 2016. NVDIMM: Changes are Here So What’s
Next?. In In-Memory Computing Summit 2016.

[49] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010.
Understanding Latent Sector Errors and How to Protect
Against Them. In Proceedings of the 8th USENIX Conference on
File and Storage Technologies (FAST’10). USENIX Association,
Berkeley, CA, USA, 6–6. http://dl.acm.org/citation.cfm?id=
1855511.1855517

[50] Bianca Schroeder and Garth A Gibson. 2007. Disk Failures in
the Real World: What does an MTTF of 1,000,000 Hours Mean
to You?. In USENIX Conference on File and Storage Technologies
(FAST).

[51] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016.
Flash Reliability in Production: The Expected and the Unex-
pected. In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16). USENIX Association, Santa Clara, CA, 67–
80. http://usenix.org/conference/fast16/technical-sessions/
presentation/schroeder

[52] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.
2009. DRAM Errors in the Wild: A Large-scale Field Study. In
ACM SIGMETRICS.

[53] SQLite. 2017. SQLite. (2017). https://www.sqlite.org.
[54] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B

Ferreira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi.
2015. Memory Errors in Modern Systems: The Good, The Bad,
and The Ugly. In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM.

[55] V. Sridharan and D. Liberty. 2012. A study of DRAM failures
in the field. In High Performance Computing, Networking, Stor-
age and Analysis (SC), 2012 International Conference for. 1–11.
https://doi.org/10.1109/SC.2012.13

[56] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and
R Stanley Williams. 2008. The Missing Memristor Found.
Nature 453, 7191 (2008), 80–83.

[57] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016.
Filebench: A Flexible Framework for File System Benchmark-
ing. USENIX; login 41 (2016).

[58] Stephen C. Tweedie. 1998. Journaling the Linux ext2fs Filesys-
tem. In LinuxExpo’98: Proceedings of The 4th Annual Linux
Expo.

[59] UEFI Forum. 2017. Advanced Configuration
and Power Interface Specification. (2017).
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf.

[60] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy Campbell. 2011. Consistent and Durable
Data Structures for Non-volatile Byte-addressable Memory. In
Proceedings of the 9th USENIX Conference on File and Storage
Technologies (FAST ’11). USENIX Association, San Jose, CA,

495

https://doi.org/10.1147/JRD.2011.2177106
https://doi.org/10.1145/2745844.2745848
https://doi.org/10.1109/DSN.2015.57
http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://www.micron.com/products/dram-modules/nvdimm
http://www.micron.com/products/dram-modules/nvdimm
https://www.mongodb.com
https://www.mongodb.com
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/2928275.2928278
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://pmem.io/nvml
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/121132.121137
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
http://dl.acm.org/citation.cfm?id=1855511.1855517
http://dl.acm.org/citation.cfm?id=1855511.1855517
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.sqlite.org
https://doi.org/10.1109/SC.2012.13

NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System SOSP ’17, October 28, 2017, Shanghai, China

USA, 5–5.
[61] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory. In ASPLOS ’11:
Proceeding of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems.
ACM, New York, NY, USA.

[62] Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu,
Filip Blagojević, Luiz Franca-Neto, Damien Le Moal, Trevor
Bunker, Jian Xu, Steven Swanson, and Zvonimir Bandić. 2014.
DC Express: Shortest Latency Protocol for Reading Phase
Change Memory over PCI Express. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST ’14).
USENIX, Santa Clara, CA, 309–315. https://www.usenix.org/
conference/fast14/technical-sessions/presentation/vucinic

[63] Matthew Wilcox. 2014. Add Support for NV-DIMMs to Ext4.
(2014). https://lwn.net/Articles/613384/.

[64] Jian Xu and Steven Swanson. 2016. NOVA: A Log-
structured File System for Hybrid Volatile/Non-volatile Main
Memories. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara,
CA, 323–338. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/xu

[65] Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When
Poll Is Better than Interrupt. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST ’12). USENIX,
Berkeley, CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=
2208461.2208464

[66] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2010. End-to-end Data Integrity
for File Systems: A ZFS Case Study. In Proceedings of the 8th
USENIX Conference on File and Storage Technologies (FAST’10).
USENIX Association, Berkeley, CA, USA, 3–3. http://dl.acm.
org/citation.cfm?id=1855511.1855514

[67] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Nor-
man P. Jouppi. 2013. Kiln: Closing the Performance Gap Be-
tween Systems With and Without Persistence Support. In
Proceedings of the 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-46). ACM, New York, NY,
USA, 421–432. https://doi.org/10.1145/2540708.2540744

496

https://www.usenix.org/conference/fast14/technical-sessions/presentation/vucinic
https://www.usenix.org/conference/fast14/technical-sessions/presentation/vucinic
https://lwn.net/Articles/613384/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
http://dl.acm.org/citation.cfm?id=2208461.2208464
http://dl.acm.org/citation.cfm?id=2208461.2208464
http://dl.acm.org/citation.cfm?id=1855511.1855514
http://dl.acm.org/citation.cfm?id=1855511.1855514
https://doi.org/10.1145/2540708.2540744

	Abstract
	1 Introduction
	2 Background
	2.1 Non-volatile Memory Technologies
	2.2 NVMM File Systems and DAX
	2.3 File System Consistency and Reliability
	2.4 The NOVA File System

	3 Snapshots
	3.1 Taking and Restoring Snapshots
	3.2 Snapshot Management
	3.3 Snapshots for DAX mmap()'d Files
	3.4 Design Decisions and Evaluation

	4 Handling Data Corruption in NOVA-Fortis
	4.1 Detecting and Correcting Media Errors
	4.2 Tick-Tock Metadata Protection
	4.3 Protecting File Data
	4.4 Minimizing Vulnerability to Scribbles
	4.5 Preventing Scribbles
	4.6 Relaxing Data and Metadata Protection
	4.7 Protecting DRAM Data Structures
	4.8 Related and Future Work

	5 Performance Trade-offs
	5.1 Experimental Setup
	5.2 Performance Impacts
	5.3 Microbenchmarks
	5.4 Macrobenchmarks
	5.5 NVMM Storage Utilization

	6 Conclusion
	References

