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Abstract
Recently, with the emergence of low-latency NVM stor-
age, software overhead has become a greater bottleneck
than storage latency, and memory mapped file I/O has
gained attention as a means to avoid software overhead.
However, according to our analysis, memory mapped file
I/O incurs a significant amount of additional overhead. To
utilize memory mapped file I/O to its true potential, such
overhead should be alleviated. We propose map-ahead,
mapping cache, and extended madvise techniques to max-
imize the performance of memory mapped file I/O on low-
latency NVM storage systems. This solution can avoid
both page fault overhead and page table entry construc-
tion overhead. Our experimental results show throughput
improvements of 38–70% in microbenchmarks and per-
formance improvements of 6–18% in real applications
compared to existing memory mapped I/O mechanisms.

1 Introduction
Although CPU performance has increased dramatically,
the performance of storage systems has not improved as
rapidly as their capacity. Even though CPUs can process
data quickly, systems have bottlenecks due to storage
devices latency, and this wasted time is the most signifi-
cant component of overhead for data-intensive workloads.
These days, the ever-increasing data-intensive nature of
recent applications requires significant improvements in
performance, and in-memory data processing has drawn
attention because it can process workloads much faster by
eliminating I/O overhead. In addition, techniques to en-
sure the durability of data in the main memory have been
actively studied [19, 21]. Recently, an increase in the use
of non-volatile DIMMs (NVDIMMs) has begun to provide
high-performance memory storage by integrating DRAM
with battery-backed NAND flash memory [20]. Emerging
non-volatile memories (NVMs), including high-density
STT-MRAM [9], have an almost equivalent ability to
DRAM, and these are often considered to be suitable for
the main memory in the future, even replacing DRAM [3].
With the use of modern memory technology, it is possi-
ble to develop high-performance storage devices, such
as Intel and Micron’s 3D XPoint [14]. The use of next-
generation storage technologies will help remove almost
all storage latency that has plagued conventional storage
devices.

However, existing operating systems (OSs) have been
designed to manage fast CPUs and very slow block de-
vices. For this reason, their resource management mech-
anisms inefficiently manage low-latency NVM storage
devices and fail to take advantage of the potential benefits
of NVM devices [1]. In fact, software overhead has been
identified as a new dominating overhead to be solved in
the systems equipped with low-latency NVM storage de-
vices [6, 31, 22]. Software overhead includes complicated
I/O stacks, redundant memory copies, and frequent user/k-
ernel mode switches. Such overhead is currently small
enough to be ignored, but will be the largest overhead
soon when storage latencies are significantly reduced by
using the NVDIMMs and NVMs.

To fully exploit high-performance next-generation
NVM storage, researchers have proposed various NVM-
aware file systems [11, 13, 26, 28, 29, 30, 15] and system
software [27, 10, 8]. In most of these studies, memory
mapped file I/O has been commonly proposed to provide
fast file accesses. Mapping a file onto user memory space
with an mmap system call enables users to access the file di-
rectly in the same way as data on the memory. Therefore,
it is possible to avoid the use of a complicated I/O stack
for existing OSs, as well as user/kernel mode switches
from read/write system calls. Consequently, this mini-
mizes the occurrence of user/kernel mode switching. In
addition, no data copies are needed between kernel space
and user space, which consequently minimizes overhead.
For these reasons, the mmap system call has a high likeli-
hood to become a critical interface in the future [30, 25].

However, our analysis indicates that memory mapped
file I/O can have a large software overhead, and this over-
head comes from three sources. First, the overhead to
map files to memory is much higher than expected. A de-
tailed description is given in §2. Second, memory mapped
file I/O requires a special msync to guarantee consistency
in the files. However, the sophisticated techniques that
have been studied so far are only available in certain file
systems with a high overhead [30] or can only be used in
secondary storage systems [23]. Third, memory mapped
file I/O can not append new data at the end of the memory
mapped files. To append data to a memory mapped file,
you first need to resize the file with fallocate and then
recreate the file mapping. This is an inefficient method
that results in further overhead.
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Figure 1: Sequential access to a 4GB file on Ext4-DAX

These problems must be addressed to use memory
mapped file I/O on NVMs or NVDIMMs. In this paper,
we address the first problem, reducing the page mapping
overhead. The second and third problems will be ad-
dressed in future work. To reduce the memory mapping
overhead, we present map-ahead, mapping cache, and
extended madvise techniques. With these techniques, the
performance of the memory mapped file I/O improves by
up to 38%, 18%, and 70%, respectively.

2 Motivation
To analyze the overhead in memory mapped file I/O, we
evaluate existing mmap mechanisms along with read sys-
tem calls. Our evaluation is conducted on a Linux ma-
chine with 32GB DRAM and 32GB NVDIMM-N [20].
We installed an Ext4-DAX [28] file system through a
PMEM driver on the NVDIMM-N. The Ext4-DAX sim-
plifies the Ext4 file system to directly access memory
storage, bypassing the page cache. The microbenchmark
in our analysis sequentially reads a 4GB file in units of
4KB. Read, shown in Figure 1, is the case where the read
system call is used to access the file. Default-mmap in
Figure 1 is the case where mmap is called without any
special flags and populate-mmap in Figure 1 is the case
where mmap is called with the MAP POPULATE flag. When
the MAP POPULATE flag is used, mmap constructs all page
table entries for the entire file, whereas default-mmap re-
lies on a page fault handler to construct a page table entry
for the referred page (minor page fault). Thus, populate-
mmap may take longer, but subsequent accesses to the
memory mapped file can proceed without page faults.
This is called a prefault mechanism.

Figure 1 shows the result of our microbenchmark test.
It is interesting to note is that the memory mapped file
I/O is not so fast as expected, when compared to the
read system call. Reading a 4GB file sequentially takes
1.06 seconds, 1.42 seconds, and 1.02 seconds for read,
default-mmap, and populate-mmap, respectively. As for
the memory mapped file I/O, the time take for file access
(copy from mapped area to user buffer) accounts for only

about 40% of the total time. The rest of the time is spent
to prepare the file accesses. For the default-mmap, each
access to a page causes a page fault, and 11% of the total
time is spent to call the page fault handler (page fault
overhead). In addition, the time spent in the file access
are different for the default-mmap and populate-mmap.
A huge difference in TLB misses is the main reason. In
sequential accesses, the TLB page walker implemented in
the MMU sophisticatedly prefetches TLB entries from the
page table. For the populate-mmap, the page table entries
are already there to prefetch, but they are not ready for
default-mmap. Since both default-mmap and populate-
mmap require page mapping of a 4GB file, they take
the same time for page table entry construction, which
accounts for 45% and 62% of the whole execution time,
respectively. This is absolutely necessary work to access
the memory mapped files, but it is more expensive than
the cost of the file access.

As shown in Figure 1, memory mapped file I/O still
possesses a high overhead to construct page table entries.
In traditional storage systems, this overhead was negligi-
ble, but not now. Relying on the page fault mechanism
or populating entries for the whole file is not adequate,
either. In this paper, we propose a couple of extensions to
existing memory mapped file I/O to reduce the overhead
involved in page table entry construction.

3 Related Works
There have been studies to reduce the page fault over-
head. A premapping scheme [7] uses the hint files of the
page fault history which is obtained from profiling runs.
According to the experimental results, memory access
patterns were quite random, and the result of the profile
was required to predict the page faults.

PMFS [13] proposed file mapping with the use of
hugepage or MAP POPULATE flag. Compared to the use of
the general page size, the use of hugepage requires a far
smaller amount of page mapping, which greatly reduces
the TLB misses and page faults. However, hugepage may
lead to internal fragmentation and expensive copy-on-
write (CoW). CoW is a popular technique to protect data
consistency. If several MBs or GBs need to be copied
simply to update several bytes to perform CoW on huge
pages, it causes too much overhead. In the case of the
MAP POPULATE flag, constructing the page table entries
for the entire file may be too much overhead, if only a par-
tial contents of the file is accessed. According to the study
on file system workload, large files tend to be accessed
only partially [24]. In addition, analytic research on the
file access pattern of the network file system reveals that
partially accessed files amount to 67% of all files [16].
Therefore, the MAP POPULATE flag should be used only
when a sufficient portion of the file will be accessed.

In a study on memory mapped file I/O [25], researchers



proposed a modified page reclamation method that tries
to reclaim pages from its own process. They also used
vectored I/O for write operations of reclaimed pages. This
method reduces context-switch overheads and results in a
92% performance improvement on DRAM-based SSDs.
When data-intensive workloads are running, this tech-
nique will improve the performance of memory mapped
file I/O.

4 Design
To take full advantage of memory mapped file I/O on low-
latency NVM storage devices, the following issues need
to be addressed. First, the page fault overhead should be
reduced while minimizing the prefault overhead. Exist-
ing method (MAP POPULATE) is not enough, since it still
contains a prefault overhead. Second, the overhead in
the page table entry construction needs to be reduced. In
low-latency NVM systems, both are a serious burden on
the whole system.

4.1 Map-ahead
We have designed our map-ahead mechanism to reduce
the page fault overhead and prefault overhead in mem-
ory mapped file I/O. Our map-ahead technique follows
the same principle as the read-ahead mechanism, but we
apply it to page table entry construction. All files are main-
tained in the main memory for in-memory file systems on
NVM storage devices. Since the purpose of read-ahead
is to bring data from the secondary storage to the main
memory, this stage is no longer needed for in-memory file
systems. Our map-ahead technique maps the pages that
are expected to be accessed before page faults occur.

The virtual memory system in our OS is managed us-
ing a demand-paging policy that was designed in the late
1960s when the amount of the main memory was scarce.
Despite radical developments in computer systems, it is
still used until now [5]. Modern computer systems have
a much larger amount of memory and can even operate
with in-memory file systems, and this new environment
necessitates a new approach. When a page fault occurs, a
conventional page fault handler processes only the corre-
sponding page. If page faults occur often to access mem-
ory mapped files, the switches between the user mode and
kernel mode also frequently occur to invoke the page fault
handler. In low-latency NVM systems, frequent mode
switches require overhead. Thus, the page fault handler
would rather process additional pages that are expected
to be accessed soon.

With existing memory mapped file I/O, it is possible to
access files with memory operations. The kernel simply
manages the memory mapped files as a part of the process
address space without considering the file access patterns.
However, our map-ahead mechanism dynamically ana-
lyzes the page fault patterns to predict the pages that are

to be accessed. If page faults occur on sequentially placed
pages, it is reasonable to predict that the next page will be
accessed. In this way, the page fault handler additionally
processes the predicted pages to reduce the number of
page faults. Moreover, if sequential page faults occur
continuously, the map-ahead window size increases. The
map-ahead window size is the number of pages that are
processed together within a page fault. A bigger window
size can be used to reduce the number of page faults. On
the other hand, if page faults occur in random locations,
the map-ahead window size decreases. If a random page
fault repeats, the map-ahead window size will be reduced
to one page. In our experiments in §5, the map-ahead win-
dow size is doubled when a sequential page fault occurs
and is reduced by half when a random page fault occurs.

If a sequential page fault occurs continuously, the
map-ahead window size becomes very large. The re-
sponse time of the page fault handler will also become
too long since the pages to process at one page fault pile
up. Even though many pages should be dealt with at
once, the whole performance can improve by returning
the control early to the application. We designed an asyn-
chronous map-ahead method to ensure a short response
time of the page fault handler, and this also hides the
overhead of the page table entry construction. With the
asynchronous map-ahead mechanism, the page fault han-
dler synchronously processes only pages that are required
immediately and returns to the application context right
away. The rest of the pages are processed asynchronously
by kernel threads.

In the Linux kernel x86-64, a multi-level page table is
used for address translation. An entry in the page middle
directory (PMD) points to a page table. This page table
is 4KB in size and can contain 512 page table entries
(PTEs). A PTE finally points to a page frame. When
updating a PTE, the page table where it belongs to is spin-
locked. Thus, our map-ahead mechanism synchronously
processes pages in the same page table. If pages belong to
other page tables, they are handled asynchronously. When
we have pages to process across multiple page tables,
asynchronous map-ahead can be processed in parallel.

4.2 Mapping cache
When munmap is called, the kernel releases the virtual
memory area (VMA) to which the file is mapped and
removes its corresponding page table entries. In tradi-
tional systems, it is reasonable to delete them immedi-
ately because the memory mapping overhead is negligible
compared to the cost of data read from the secondary stor-
age (such as HDDs). Moreover, they will be reclaimed
soon from the main memory. However, the memory map-
ping overhead in NVM storage systems is a huge burden,
and the file pages of in-memory file systems remain in
the main memory. Thus, new management techniques
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Figure 2: Performance of map-ahead and extended madvise

are needed for in-memory file systems. We propose a
mapping cache technique to minimize the overhead as-
sociated with memory mapping by reusing page table
entries. When munmap is called, our mechanism does not
release VMAs. Instead, the kernel caches the VMAs in
the mapping cache to reuse them later.

The mapping cache consists of two parts: a hash table
and a LRU list. When the VMAs are cached in the map-
ping cache, the VMAs are added to the hash table and the
LRU list, respectively. The hash table is used to quickly
find the cached VMAs, where its hash key is generated
with the file path. When mmap is called, the kernel checks
if the VMA of the file requested for memory mapping
exists in the mapping cache. If there is a reusable VMA,
the kernel does not allocate a new VMA, but reuses the
cached VMA and its page table entries. The LRU list
is then used to release the cached but not used VMAs.
If the kernel continues to allocate new VMAs but not
releases them, the process's address space may become
scarce even in 64-bit address space. The kernel checks
the threshold whenever VMAs are cached in the mapping
cache. If the total amount of cached VMAs exceeds the
threshold, excess VMAs are released from the tail of the
LRU list. Those are the oldest and presumably have the
least chance of being used in the near future. In our exper-
iments in §5, we experimented with two thresholds: 2GB
and no-limit.

4.3 Extended madvise

The existing madvise system call allows a process to
give advice to the kernel about the access pattern of the
specific memory range. For example, if a process gives
a hint to the kernel that a specific memory range will
be accessed sequentially (MADV SEQUENTIAL), the kernel
aggressively performs read-ahead on the given memory
range. If the madvise is used suitably, the performance of
the applications will be greatly improved. Since madvise
mainly helps paging between the main memory and the
secondary storage, it is unrelated to in-memory file sys-

tems.
We have extended the madvise system call to take ad-

vantage of user hints in the in-memory file systems. In our
mechanism, if the kernel receives the MADV SEQUENTIAL

or MADV WILLNEED hint, the kernel performs an asyn-
chronous map-ahead on a given range. The map-ahead
predicts the access patterns through page fault patterns,
but if the extended madvise is used, the kernel can pre-
dict the access patterns without tracking the page fault
patterns. In the case in which the kernel receives the
MADV RANDOM hint, the kernel decreases the map-ahead
window size to one. In the case the kernel receives the
MADV DONTNEED hint, the VMA of the memory mapped
file is not cached in the mapping cache. With these exten-
sions to madvise, we can manage the memory-mapped
file I/O more effectively.

5 Evaluation
Our experiments were performed on a system with an
Intel Xeon E5-2620 Processor, running Linux kernel 4.4
extended with our techniques. The main memory and
file system settings are the same as the one described in
§2 (32GB DRAM, 32GB NVDIMM-N, Ext4-DAX file
system on NVDIMM-N).

We measured the performance of map-ahead and ex-
tended madvise by using fio benchmark [4]. It repeatedly
reads a 4GB memory mapped file for 30 seconds in a sin-
gle thread. Figure 2(a) shows the results of a sequential
read. When the record size is 4KB, populate-mmap im-
proves the bandwidth by 46%, compared to default-mmap.
This is achieved by the reduced page faults; populate-
mmap makes about 13 thousand page faults, while default-
mmap does about 16 million. Map-ahead makes about
14 thousand page faults, which is slightly larger than
populate-mmap, but the achieved bandwidth is far better
than populate-mmap. Since the overhead of the page ta-
ble entry construction is mostly hidden by asynchronous
kernel threads, the bandwidth is improved by 38% from
populate-mmap. Applications can provide file access pat-
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Figure 3: Performance of mapping-cache

terns via the madvise system call. Fio benchmark also
provides MADV SEQUENTIAL on sequential file I/Os to
pass the kernel user hint. Our extended madvise technique
is designed to perform an asynchronous map-ahead based
on the user hint. Thus, it improves the performance fur-
ther by 23%, compared to map-ahead technique, which
is a 70% improvement compared to populate-mmap. The
performance of map-ahead and extended madvise still
improve for bigger record sizes (8, 16, 32, 64KB).

Figure 2(b) shows the results of a random read. The
performance of populate-mmap is the worst for random
read. Random read only accesses a partial pages of files,
but populate-mmap pays the overhead for all pages of
the entire file. As the record size increases, the band-
width of map-ahead increases due to short sequential
page accesses within a record. Since fio benchmark in-
vokes madvise with MADV RANDOM for random access,
extended madvise shows nearly the same performance as
default-mmap.

We used MongoDB [17] with MMAPv1 to evaluate
the performance of map-ahead and extended madvise.
MMAPv1, which is a storage engine provided by Mon-
goDB, is implemented with memory mapped file I/O. For
the workload, we used a database load workload in YCSB
benchmark suite [12]. The load workload was used to
insert data into MongoDB. The total data size is 20GB,
which is a collection of multiple files with various sizes
(64MB–2GB). Figure 2(c) shows the result of the YCSB
load on MongoDB. Compared to default-mmap, map-
ahead and extended madvise improve the performance by
14% and 17%, respectively. Compared to populate-mmap,
their improvements are 6% and 9%, respectively. One
thing to note is that populate-mmap may cause a large
latency for the load operation if it is the first load opera-
tion for a database file. Since populate-mmap possesses a
prefault overhead at the beginning, the latency of the first
load transaction tends to be large. As for map-ahead, the
performance improvement is rather small, even if the ac-
cess pattern of the load workload is completely sequential.
Since the data was divided into multiple files, aggregated

performance improvements become small overall.
We evaluate the performance of Apache HTTP

server [2] with mapping cache technique. The server
executes an Apache HTTP server to get requests from
clients. The server has 10 thousand 1MB-size HTML
files obtained as copies of Wikipedia page. The total size
is about 10GB. In this experiment, we used eight addi-
tional machines for the clients. Each machine contains
an X5550 Xeon CPU and 64GB of DRAM. Ten client
threads from eight machines make requests to the server
simultaneously. Each client thread executes httperf, a
testing tool used to measure web server performance [18].
The httperf tool requests several URLs in order of appear-
ance in a file which follows a zipf-like distribution.

Figure 3 shows the breakdown of the CPU cycles for
five-minute runs of Apache HTTP server. In this ex-
periment, mapping cache reduces the number of page
faults by 31–51%. As a result, it reduces the overhead
involved in the page fault and page table construction.
While the portions labeled as libphp, libc, and other do
not change much, the CPU cycles used in the kernel are
greatly reduced by 24–35% on mapping-cache. Com-
pared to populate-mmap, the overall performance is im-
proved by 12% for mapping cache with a 2GB limit and
by 18% for mapping cache without limit.

6 Conclusion
The overhead in the software layer is becoming larger than
the storage latency as low-latency NVM storage devices
become available. The main reason is that existing OSs
do not reflect the characteristics of them. Thus, memory
mapped file I/O is receiving attention as a way to avoid
software overhead. The memory mapped file I/O still
incurs expensive additional overhead, and this is mainly
caused by the fact that the current mechanism in memory
mapped file I/O involves resource management mecha-
nisms that are designed for slow block devices. To exploit
the benefits of memory mapped file I/O on low-latency
NVM storage devices, we propose map-ahead, mapping
cache, and extended madvise techniques that can effec-
tively alleviate the overhead of the mapping files. In our
experiments, map-ahead improved the performance by up
to 38% over the prefault method (populate-mmap) and
an additional 23% performance improvement could be
achieved by using extended madvise. In addition, map-
ping cache improved the performance by up to 18% com-
pared to the prefault method (populate-mmap).
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