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Large Overhead in Software

• Existing OSes were designed for fast CPUs and slow block devices

• With low-latency storage, SW overhead becomes the largest burden

• Software overhead includes
– Complicated I/O stacks
– Redundant memory copies
– Frequent user/kernel mode switches

• SW overhead must be addressed
to fully exploit low-latency NVM storage
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Eliminate SW Overhead with mmap

• In recent studies, memory mapped I/O has been commonly proposed
– Memory mapped I/O can expose the NVM storage’s raw performance

• Mapping files onto user memory space
– Provide memory-like access
– Avoid complicated I/O stacks
– Minimize user/kernel mode switches
– No data copies

• A mmap syscall will be a critical interface
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• Microbenchmark: sequential read, a 4GB file (Ext4-DAX on NVDIMM-N)
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• default-mmap :
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• populate-mmap :
mmap with a MAP_POPULATE flag



• Microbenchmark: sequential read, a 4GB file (Ext4-DAX on NVDIMM-N)
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Overhead in Memory Mapped File I/O

• Memory mapped I/O can avoid the SW overhead of traditional file I/O

• However, Memory mapped I/O causes another SW overhead
– Page fault overhead
– TLB miss overhead
– PTE construction overhead

• It decreases the advantages of memory mapped file I/O

6



Techniques to Alleviate Storage Latency

• Readahead
– Preload pages that are expected to be accessed

• Page cache
– Cache frequently accessed pages

• fadvise/madvise interfaces
– Utilize user hints to manage pages

• However, these can’t be used in memory based FSs
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Techniques to Alleviate Storage Latency

• Readahead
– Preload pages that are expected to be accessed

• Page cache
– Cache frequently accessed pages

• fadvise/madvise interfaces
– Utilize user hints to manage pages

• However, these can’t be used in memory based FSs
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Map-ahead Constructs PTEs in Advance

• When a page fault occurs, the page fault handler handles
– A page that caused the page fault (existing demand paging)
– Pages that are expected to be accessed (map-ahead)

• Kernel analyzes page fault patterns to predict pages to be accessed
– Sequential fault : map-ahead window size ↑
– Random fault : map-ahead window size ↓

• Map-ahead can reduce # of page faults
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Comparison of Demand Paging & Map-ahead
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Async Map-ahead Hides Mapping Overhead
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Async Map-ahead Hides Mapping Overhead
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Extended madvise Makes User Hints Available

• Taking advantage of user hints can maximize the app’s performance
– However, existing interfaces are to optimize only paging

• Extended madvise makes user hints available in memory based FSs
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Mapping Cache Reuses Mapping Data

• When munmap is called, existing kernel releases the VMA and PTEs
– In memory based FSs, mapping overhead is very large

• With mapping cache, mapping overhead can be reduced
– VMAs and PTEs are cached in mapping cache
– When mmap is called, they are reused if possible (cache hit)
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Experimental Environment

• Experimental machine
– Intel Xeon E5-2620
– 32GB DRAM, 32GB NVDIMM-N
– Linux kernel 4.4
– Ext4-DAX filesystem

• Benchmarks
– fio : sequential & random read
– YCSB on MongoDB : load workload
– Apache HTTP server with httperf
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fio : Sequential Read
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fio : Random Read
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fio : Random Read
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Web Server Experimental Setting

• Apache HTTP server
– Memory mapped file I/O
– 10 thousand 1MB-size HTML files (from Wikipedia)
– Total size is about 10GB

• httperf clients
– 8 additional machines
– Zipf-like distribution
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Conclusion

• SW latency is becoming bigger than the storage latency
– Memory mapped file I/O can avoid the SW overhead

• Memory mapped file I/O still incurs expensive additional overhead
– Page fault, TLB miss, and PTEs construction overhead

• To exploit the benefits of memory mapped I/O, we propose
– Map-ahead, extended madvise, mapping cache

• Our techniques demonstrate good performance by mitigating the 
mapping overhead

– Map-ahead :  38% ↑
– Map-ahead + extended madvise : 23% ↑
– Mapping cache : 18% ↑
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