
Efficient Memory Mapped File I/O
for In-Memory File Systems
Jungsik Choi†, Jiwon Kim, Hwansoo Han

2

Storage Latency Close to DRAM

Millisec NanosecMicrosec

O
pe

ra
tio

ns
 P

er
 S

ec
on

d

NVDIMM-N
(~10ns)

3D-XPoint & Optane
(~10 μs)

PCIe
Flash SSD
(~60 μs)SATA/SAS

Flash SSD
(~100μs)

SATA HDD

Large Overhead in Software

• Existing OSes were designed for fast CPUs and slow block devices

• With low-latency storage, SW overhead becomes the largest burden

• Software overhead includes
– Complicated I/O stacks
– Redundant memory copies
– Frequent user/kernel mode switches

• SW overhead must be addressed
to fully exploit low-latency NVM storage

3

0%

20%

40%

60%

80%

100%

HDD 10Gb
NIC

NVMe
10Gb NIC

PCM 10Gb
NIC

PCM
100Gb NIC

La
te

nc
y

D
ec

om
po

si
ti

on
(N

or
m

al
iz

ed
)

Software Storage NIC

(Source: Ahn et al. MICRO-48)

HDD
10Gb NIC

PCM
10Gb NIC

PCM
100Gb NIC

NVMe SSD
10Gb NIC

7%

50%

77% 82%

Eliminate SW Overhead with mmap

• In recent studies, memory mapped I/O has been commonly proposed
– Memory mapped I/O can expose the NVM storage’s raw performance

• Mapping files onto user memory space
– Provide memory-like access
– Avoid complicated I/O stacks
– Minimize user/kernel mode switches
– No data copies

• A mmap syscall will be a critical interface
4

File System

Device Driver

r/w syscalls

Persistent
Memory

App

load/store
instructions

App

Disk/Flash

user

kernel

Memory mapped I/OTraditional I/O

• Microbenchmark: sequential read, a 4GB file (Ext4-DAX on NVDIMM-N)

0

0.5

1

1.5

El
ap

se
d

Ti
m

e
(s

ec
)

계열 4

page fault overhead

page table entry construction

file access

Memory Mapped I/O is Not as Fast as Expected

5

0.16

0.64

0.64

0.39
0.63

1.06

1.42

1.02
• read :
read system calls

• default-mmap :
mmap without any special flags

• populate-mmap :
mmap with a MAP_POPULATE flag

• Microbenchmark: sequential read, a 4GB file (Ext4-DAX on NVDIMM-N)

0

0.5

1

1.5

El
ap

se
d

Ti
m

e
(s

ec
)

계열 4

page fault overhead

page table entry construction

file access

Memory Mapped I/O is Not as Fast as Expected

5

0.16

0.64

0.64

0.39
0.63

1.06

1.42

1.02

Overhead in Memory Mapped File I/O

• Memory mapped I/O can avoid the SW overhead of traditional file I/O

• However, Memory mapped I/O causes another SW overhead
– Page fault overhead
– TLB miss overhead
– PTE construction overhead

• It decreases the advantages of memory mapped file I/O

6

Techniques to Alleviate Storage Latency

• Readahead
– Preload pages that are expected to be accessed

• Page cache
– Cache frequently accessed pages

• fadvise/madvise interfaces
– Utilize user hints to manage pages

• However, these can’t be used in memory based FSs

7

Main Memory

Secondary
Storage

Page Cache

Readahead

App
User Hints

(madvise/fadvise)

Techniques to Alleviate Storage Latency

• Readahead
– Preload pages that are expected to be accessed

• Page cache
– Cache frequently accessed pages

• fadvise/madvise interfaces
– Utilize user hints to manage pages

• However, these can’t be used in memory based FSs

7

Main Memory

Secondary
Storage

Page Cache

Readahead

App
User Hints

(madvise/fadvise)

⇒Map-ahead

⇒Mapping cache

⇒ Extended madvise

⇒ New optimization is needed in memory based FSs

Map-ahead Constructs PTEs in Advance

• When a page fault occurs, the page fault handler handles
– A page that caused the page fault (existing demand paging)
– Pages that are expected to be accessed (map-ahead)

• Kernel analyzes page fault patterns to predict pages to be accessed
– Sequential fault : map-ahead window size ↑
– Random fault : map-ahead window size ↓

• Map-ahead can reduce # of page faults

8

NEARLY_SEQ
winsize -

PURE_SEQ
winsize ↑

NON_SEQ
winsize ↓

rnd

rnd

rnd

seq

seq
seq

9

Comparison of Demand Paging & Map-ahead

• Existing demand paging
aapplication

page fault
handler 1

b

2

c

3

d

4

e

5

f

time

9

Comparison of Demand Paging & Map-ahead

• Existing demand paging
aapplication

page fault
handler 1

b

2

c

3

d

4

e

5

f

time

overhead in user/kernel mode switch, page fault, TLB miss

9

Comparison of Demand Paging & Map-ahead

• Existing demand paging
aapplication

page fault
handler 1

b

2

c

3

d

4

e

5

f

time

aapplication

page fault
handler

1

b

2

c

3

d

4

e

5

f

time

• Map-ahead

overhead in user/kernel mode switch, page fault, TLB miss

Map-ahead window size == 5

Performance gain

10

Async Map-ahead Hides Mapping Overhead

Map-ahead window size == 5

aapplication

page fault
handler

1

b

2

c

3

d

4

e

5

f

time

• Sync map-ahead

10

Async Map-ahead Hides Mapping Overhead

aapplication

page fault
handler

1

b

2

c

3

d

4

e

5

f

time

• Sync map-ahead

time

aapplication

page fault
handler

1

b

2

c

3

d

4

e

5

f

kernel threads

• Async map-ahead

Performance gain

Extended madvise Makes User Hints Available

• Taking advantage of user hints can maximize the app’s performance
– However, existing interfaces are to optimize only paging

• Extended madvise makes user hints available in memory based FSs

11

Existing madvise Extended madvise
MADV_SEQUENTIAL
MADV_WILLNEED Run readahead aggressively Run map-ahead aggressively

MADV_RANDOM Stop readahead Stop map-ahead

MADV_DONTNEED Release pages in page $ Release mapping in mapping $

Mapping Cache Reuses Mapping Data

• When munmap is called, existing kernel releases the VMA and PTEs
– In memory based FSs, mapping overhead is very large

• With mapping cache, mapping overhead can be reduced
– VMAs and PTEs are cached in mapping cache
– When mmap is called, they are reused if possible (cache hit)

12

VA | PA
VA | PA
VA | PA

Process address
space

Page table Physical memory

VMA

VMA

VMA

VMA
VMA

VMA

mm_struct
red-black tree

mmaped
region

Experimental Environment

• Experimental machine
– Intel Xeon E5-2620
– 32GB DRAM, 32GB NVDIMM-N
– Linux kernel 4.4
– Ext4-DAX filesystem

• Benchmarks
– fio : sequential & random read
– YCSB on MongoDB : load workload
– Apache HTTP server with httperf

13

Netlist DDR4 NVDIMM-N 16GB × 2

14

fio : Sequential Read

0

1

2

3

4

5

6

7

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvise

14

fio : Sequential Read

0

1

2

3

4

5

6

7

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvise

46%

16 million page faults

13 thousand page faults

38%

14 thousand page faults

23%

14

fio : Sequential Read

0

1

2

3

4

5

6

7

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvise

15

fio : Random Read

0

1

2

3

4

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvise

15

fio : Random Read

0

1

2

3

4

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvisepopulate-mmap

15

fio : Random Read

0

1

2

3

4

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madvisemap-ahead

15

fio : Random Read

0

1

2

3

4

4 8 16 32 64

Ba
nd

w
id

th
 (G

B/
s)

Record Size (KB)

default-mmap populate-mmap map-ahead extended madviseextended madvise

madvise(MADV_RANDOM) == default-mmap

Web Server Experimental Setting

• Apache HTTP server
– Memory mapped file I/O
– 10 thousand 1MB-size HTML files (from Wikipedia)
– Total size is about 10GB

• httperf clients
– 8 additional machines
– Zipf-like distribution

16

httperf clients

Apache HTTP server

1Gbps switch 24 ports
(lperf: 8,800Mbps bandwidth)

17

Apache HTTP Server

0

1

2

3

4

5

6

600 700 800 900 1000

CP
U

 C
yc

le
s

(t
ri

lli
on

s,
 1

012
)

kernel libphp libc others

600 700 800 900 1000

Request Rate (reqs/s)

No mapping cache
Mapping cache (2GB)

Mapping cache (No-Limit)

17

Apache HTTP Server

0

1

2

3

4

5

6

600 700 800 900 1000

CP
U

 C
yc

le
s

(t
ri

lli
on

s,
 1

012
)

kernel libphp libc others

600 700 800 900 1000

Request Rate (reqs/s)

No mapping cache
Mapping cache (2GB)

Mapping cache (No-Limit)

Conclusion

• SW latency is becoming bigger than the storage latency
– Memory mapped file I/O can avoid the SW overhead

• Memory mapped file I/O still incurs expensive additional overhead
– Page fault, TLB miss, and PTEs construction overhead

• To exploit the benefits of memory mapped I/O, we propose
– Map-ahead, extended madvise, mapping cache

• Our techniques demonstrate good performance by mitigating the
mapping overhead

– Map-ahead : 38% ↑
– Map-ahead + extended madvise : 23% ↑
– Mapping cache : 18% ↑

18

QnA
chjs@skku.edu

19

mailto:chjs@skku.edu

