
I
am sure you have gone through
the examples given on the
SystemTap website (http://
sourceware.org/systemtap/

examples/index.html) and looked at other
resources I mentioned in the References section
of the last article. I will not try to cover all the
topics mentioned there.

To collect statistical data, SystemTap
supports aggregate variables. These are
important when data needs to be collected
quickly and in large volumes. The “<<<”
operator is used for aggregation. The left
operand specifies a scalar or array-index
l-value, which must be declared global. The
right operand is a numeric expression.

Let’s update the example (stapcount.stp) we
saw last time, to use aggregation:

global syscalls

probe syscall.* { syscalls[name] <<< 1 }

probe timer.s(10) {

 foreach(name in syscalls- limit 5)

 printf(“%8d %s\n”, @count(syscalls[name]), name)

 delete syscalls

}

You might wonder that if it serves the same
purpose, why should we use aggregation?

The collected data can later be extracted via
different extractor functions like @count(var),

@min(var), @max(var), etc. You can also
generate nice-looking histograms with the @
hist_log and @hist_linear functions. For more
information, please refer to /usr/share/doc/
systemtap-<version>/langref.pdf.

Call tracing
Wouldn’t it be good to know the flow of
execution through the code, while debugging a
problem?

SystemTap makes this very simple. Let’s
say you want to know all the “ext3”-related
functions that are called when you create a file
on an ext3 file-system.

As my installed distribution uses the
(default) ext4 file-system on the root partition,
I created a loop-back device, and formatted
it as ext3. The call trace can provide a lot of
information, which might be difficult to follow.
But by having just one device formatted with
ext3, I have narrowed down my focus. So, here
is the script:

probe kernel.function(“*@fs/ext3/*”) {

 printf (“%s -> %s\n”, thread_indent(1),

probefunc())

}

probe kernel.function(“*@fs/ext3/*”).return {

 printf (“%s <- %s\n”, thread_indent(-1), probefunc())

}

Last month, we explored SystemTap and how it works. We also discussed Tapset libraries, and
looked at a few examples. Let’s proceed from there.

SystemTap Tutorial

Part—II

___ Overview | Admin

www.LinuxForU.com | LINUX For YoU | october 2010 | 9594 | october 2010 | LINUX For YoU | www.LinuxForU.com

Admin | Overview __

The thread_indent function provides a way to better
organise the printed results. It takes one argument—an
indentation delta, which indicates how many spaces to add or
remove from a thread’s ‘indentation counter’. It then returns a
string with some generic trace data, along with an appropriate
number of indentation spaces.

After running the script, when you create a file (from
another terminal window, on ex3 formatted filesystem), you’ll
get the following output:

 0 touch(1546): -> ext3_permission

 1792 touch(1546): <- ext3_permission

 0 touch(1546): -> ext3_permission

 91 touch(1546): <- ext3_permission

 0 touch(1546): -> ext3_lookup

 66 touch(1546): -> ext3_find_entry

 123 touch(1546): -> ext3_getblk

 171 touch(1546): -> ext3_get_blocks_handle

 214 touch(1546): -> ext3_block_to_path

 250 touch(1546): <- ext3_block_to_path

Similarly, to trace all functions in a program, run the
following command:

$ stap -e ‘probe process(“<program_path>”).function(“*”) { log(pp()) }’ -c

<program_path>

You’ll need the debuginfo for the package that provides
the program. For example, for /bin/ls, you’ll need the
debuginfo of coreutils.

Kernel statement
You can put a probe on a specific line number in the kernel
code. With the following code, you can probe when line
number 836 of fs/open.c is executed, and then print the local
variables of the running function.

probe kernel.statement(“*@fs/open.c:836”) {

 printf(“local variables %s \n”, $$locals);

}

You’ll get an output similar to what’s shown below:

local variables inode=0xffff880008c6a7b0 error=0x0

Guru mode
Guru mode allows you to run the script without any memory
and data protection, which is normally provided by the
SystemTap access restrictions. It allows you to change things,
rather than just observing. To run the script in guru mode, you
need to run it with the -g option. You can then modify any
data in the function, at a memory address, etc. You can add

custom C code anywhere. However, note that you could easily
mess something up and crash the kernel, so be very cautious
when you use this mode.

Embedded C functions
General syntax:

 function <name>:<type> (<arg1>:<type>, ...) %{ <C_stmts> %}

Embedded C code is permitted in a function body. In
that case, the script language body is replaced entirely by a
piece of C code enclosed between %{ and %} markers. We'll
pass the arguments to this function, and will get a return
value. To do this communication SystemTap implements the
THIS structure. The THIS structure is dynamic, and contains
the arguments you specify as variables, and a field called
__retvalue, which is the value that will be returned to the
call site.

Let’s try to understand this, using an example from the
Tapset library. To get the nice value of a process, just call
task_nice from your stap script. Internally, in /usr/share/
systemtap/tapset/task.stp, this function is defined as:

// Return the nice value of the given task

function task_nice:long (task:long) %{ /* pure */

 struct task_struct *t = (struct task_struct *)(long)THIS->task;

 THIS->__retvalue = kread(&(t->static_prio)) - MAX_RT_PRIO - 20;

 CATCH_DEREF_FAULT();

%}

The function takes a long argument (task), and returns a
long (nice value). Typecast the argument to task_struct, and
later return the nice value by setting THIS->__retvalue.

Fault injection
As you can probe any kernel function and modify kernel
variables, you can use these features to inject errors. Let’s
say you want to return an ‘Invalid argument’ error when a
directory with a certain name is created.

From the kernel source:

SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)

{

 return sys_mkdirat(AT_FDCWD, pathname, mode);

}

Now, let’s put a probe when sys_mkdir returns and modify
the return value if the directory name matches “mydir”:

probe kernel.function(“sys_mkdir”).return {

 if (isinstr(user_string($pathname), “mydir”)) {

 $return = -22;

 }

}

___ Overview | Admin

www.LinuxForU.com | LINUX For YoU | october 2010 | 9594 | october 2010 | LINUX For YoU | www.LinuxForU.com

Admin | Overview __

After running this script in guru mode, whenever you try
to create a directory with the name “mydir”, you will get an
‘Invalid argument’ error.

Tracing for custom modules
Now, let’s suppose you want to trace functions from custom
modules that you have written. For instance: shown below
are module1 and module2. Module1 exports a function which
module2 uses:

====================module1=============================

#include <linux/module.h>

static int __init my_init(void)

{

 printk(“Hello world from module 1 \n”);

 return 0;

}

static void __exit my_exit(void)

{

 printk(“Goodbye world from module 1 \n”);

}

static void mod1fun(void)

{

 printk(“ YAHOO ! I got into mod1fun \n”);

}

EXPORT_SYMBOL(mod1fun);

module_init(my_init);

module_exit(my_exit);

MODULE_LICENSE(“GPL”);

====================module2=============================

#include <linux/module.h>

extern void mod1fun(void);

static int __init my_init(void)

{

 printk(“Hello world from module2\n”);

 mod1fun();

 return 0;

}

static void __exit my_exit(void)

{

 printk(“Goodbye world from module2\n”);

}

module_init(my_init);

module_exit(my_exit);

MODULE_LICENSE(“GPL”);

After compiling both modules, I have inserted module1.
Now, to probe whenever mod1fun is called, I run the
following script:

probe module(“module1”).function(“*”) {

 printf(“%s was called from somewhere \n”, probefunc());

}

Pass 1: parsed user script and 59 library script(s) in 240usr/30sys/271real

ms.

semantic error: missing x86_64 kernel/module debuginfo under ‘/

lib/modules/<kernel version>/build’ while resolving probe point

module(“module1”).function(“*”)

Pass 2: analyzed script: 0 probe(s), 0 function(s), 0 embed(s), 0 global(s)

in 90usr/380sys/474real ms.

Pass 2: analysis failed. Try again with another ‘--vp 01’ option.

...

As the output shows, stap tries to search for information
about module1 under /lib/modules/<kernel version>/build, but
doesn’t find it, and gives an error. Let’s create a directory under
/lib/modules/<kernel version>, and copy module1.ko there:

$ mkdir /lib/modules/<kernel version> /custom

$ cp <Module_Path>/module1.ko /lib/modules/<kernel version> /custom/

Now, let’s run the stap script again. Then, as you load
module2, you should see the following output in the terminal
in which the script was running:

mod1fun was called from somewhere

In this manner, you can trace any custom modules; you
just need to have debuginfo installed for those modules
where stap can find it in Pass 2. The possibilities are endless.
There are a lot of other interesting things you can do. I would
recommend that you go through the references mentioned
below, and try out as many examples as you can from the
SystemTap website.

References
http://sourceware.org/systemtap/
http://sourceware.org/systemtap/wiki/
LW2008SystemTapTutorial
http://sourceware.org/systemtap/wiki/HomePage?
action=AttachFile&do=view&target=fosdem-stap.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4469.p

By: Neependra Khare
The author is an open source enthusiast with a deep interest
in Linux. He is currently working as a software engineer at
KQ Infotech, and can be reached at neependra.khare@gmail.
com. He also provides training on the Linux kernel and on
debugging tools.

Admin | Overview ___

96 | october 2010 | LINUX For YoU | www.LinuxForU.com

