Leap ahead”

Dynamic Tracing and
Performance Analysis
Using SystemTap

Josh Stone
Software Engineer
Software and Solutions Group

August 4, 2008

Speaker Information

Josh Stone
Software Engineer
joshua.i.stone@intel.com

Intel Corporation

—Software and Solutions Group
>Performance, Analysis, and Threading Lab

Software and Solutions Group (il'l te |)

2

mailto:joshua.i.stone@intel.com

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

3

SystemTap

“painful to use”, but more painful not to

Logo credit: Andy Fitzsimon

4

Software and Solutions Group (intEI

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

5

Tutorial Live CD

eFedora 9 i686 custom

eSystemTap and all preregs included

e Please boot into live CD to follow along
—Insert CD and reboot
—Make sure BIOS boots from the CD
—Twiddle thumbs until desktop arrives

e Tutorial slides and scripts are here:
/usr/share/doc/systemtap-1w08-1.0/

Software and Solutions Group (il'l te |)

6

Existing Tools

eOn Linux
—Profiling: oprofile, perfmon2, VTune
—Stats: iostat, lockstat, netstat, vmstat
—Tracing: strace
—Printing: printk, printf
—Debugging: gdb, kgdb

e Elsewhere

—DTrace, apptrace, mdb, truss

Software and Solutions Group (il'l te |)

7

Enter SystemTap

eDynamic instrumentation tool for Linux systems
—Complete framework for tracing, collecting data, and reporting
—Flexible language lets you define the collection
—Safely probe even production systems
—Little to no overhead when not in use

e Contributions by Hitachi, IBM, Intel, Red Hat, and others

Software and Solutions Group (il'l te |)

8

Target Users

eUsage model is flexible
e Applicable to many different user types:

Kernel Developers Technical Support
Application Developers Researcher
System Administrators Student

Software and Solutions Group (il'I|ZE|

9

Use for Developers

eKernel Developer:

—How can I add debug statements easily without going through the
insert/build/reboot cycle?

e Application Developer:

—How can I improve the performance of my application in Linux?

Software and Solutions Group (il'l te |)

10

Use for Administration / Support

eSystem Administrator:

—Why do jobs occasionally take significantly longer to complete, or
not complete at all?

eTechnical Support:

—How can I safely and easily collect data out of my customer's
production system?

Software and Solutions Group (il'l te |)

11

Use in Academia

e Researcher:

—How would a proposed OS or hardware change affect system
performance?

eStudent:

—How can I learn more about the inner workings of a kernel
subsystem?

Software and Solutions Group (il'l te |)

12

Get it on Fedora

eDo it all with yum:

yum install systemtap
yum install kernel-devel gcc make

e Prepare kernel debug information:

yum install yum-utils
debuginfo-install kernel

Software and Solutions Group (il'l te |)

13

Get it on Ubuntu

eDo it all with apt-get:

apt-get install systemtap
apt-get install linux-headers-generic gcc make

e Prepare kernel debug information:

apt-get install linux-image-debug-generic
ln -s /boot/vmlinux-debug-$ (uname -r) \
/lib/modules/$ (uname -r)/vmlinux

Software and Solutions Group (il'l te |)

14

User Security

eUser root

—Can always do anything
eGroup stapdev

—Can build and run any script
e Group stapusr

—Can run blessed pre-built scripts
/lib/modules/$ (uname -r)/systemtap/

Software and Solutions Group ‘ il'l te I)

15

Obligatory Start

eEvery language has its greeting:

stap -e 'probe begin { println("Hello world!") }'
Hello world!

Software and Solutions Group (il'l te |)

16

Obligatory Start

elLet's dissect it:

stap -e 'probe begin { println("Hello world!") }'
(1---) (2) (3-=--------) (== =mmmmmm o m oo)

'stap’ is the main executable for SystemTap

'-e' tells it to run a script from the next argument

'‘probe begin' specifies a probe point at the start of execution
'"{...}' define the probe handler

pPwoN e

eSee man stap for command-line details

Software and Solutions Group (il'l te |)

17

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

18

Script Language Basics

global VAR1, VAR2

—declares variables that are accessible anywhere

probe PROBE { HANDLER }

—defines a probe location and its handler

function FUNC (ARG1l, ARG2, ...) { BODY }

—defines global functions for common code

comment to the end of the line
// comment to the end of the line

/* enclosed comment */

@ Software and Solutions Group ‘ in te |)

19

Data Types and Operators

eNumeric type 'long'
—64-bit signed integer

—Supports normal arithmetic operators:
* [/ S+ ->>KKK &N | && || = *= /= %= 4= -= >>= <<= &=
A= |=<><=>=== 1=

eString type 'string’
—Zero-terminated string in a fixed-length buffer

—Supports concatenation and comparison:
=< > <= >= == I=

e Associative arrays (global only)
—Mapping between long/string indexes to long/string/stat value
e Statistics (global only)

—Accumulates longs with the <<< operator

@ Software and Solutions Group ‘ in te |)

20

Script statements

eSemicolon separator is optional
e Group compound statements with {}

eBranching:
—if (COND) STMT [else STMT]
el ooping:
—while (COND) STMT
—for (INIT; COND; ITER) STMT
—foreach (VAR in ARRAY [limit NUM]) STMT
—foreach ([VAR1l, VAR2] in ARRAY [limit NUM]) STMT

—break; continue;

e Other:
—return [VAL],; next; delete VAR;

Software and Solutions Group (| n te |)

21

Script Arguments

e Arguments can be pulled in from the script command line
—Use $1 .. $N to access numeric arguments
—Use @1 .. @N to access string arguments
—Use $# for the number of arguments (or @# as a string)
—Missing arguments trigger a compile-time error

e The argument tapset provides strings in C style
—Use argc for the number of arguments

—Index argv[] for strings of each argument, max 32

Software and Solutions Group (il'l te |)

22

Writing Probes

e The syntax is simple:

probe PROBE {

/* code to run when the PROBE hits */
}

eUse next to return from a probe handler
e\What are the available probe points?
stap -1 PROBE

—List all the points that would be probed if you had typed:
stap -e 'probe PROBE ({}'

—Wildcards are generally allowed

—See also man stapprobes

Software and Solutions Group (il'l te |)

23

Probes: Script Lifetime

begin

—Runs when the script is starting, before any other probes

end

—Runs when the script is ending, after all other probes have
finished

error

—Runs when the script is terminating due to errors, instead of end

eEach can also take a sequence number to define order
begin(-1) , begin, begin (1)

Software and Solutions Group (il'l te |)
Solvwarne

24

Probes: Timers

eInterval timer probes fire periodically

timer.s(10) # runs every 10 seconds
—Available units: jiffies, s/sec, ms/msec, us/usec, ns/nsec
—Add variation with .randomize (N)

e The profile timer runs on every system tick
timer.profile
—Runs on all CPUs
—Includes context of interrupted process

Software and Solutions Group (il'l te |)

25

Probes: Kernel Functions

eUse kprobes and kretprobes, without the headache.
kernel. function ("FUNCQRFILE:LINE")

module ("NAME") . function ("FUNC@FILE:LINE")

—Probes any call to the named function
—The QFILE and :LINE are optional

—Wildcards are supported
e Suffixes
—With .inline, only probe inlined functions
—With .call, only probe non-inlined functions
—With .return, probe the return of non-inlined functions

elry running stap -1 'kernel.function("*").call'

Software and Solutions Group (il'l te |)

26

Probes: Kernel Function Variables

eFunction probes handlers can read parameters
—Use $NAME to read the value as a long

—For a char*, convert it to a string

kernel string($NAME) for pointers in kernel memory

user string ($NAME) for user memory (e.g. from system calls)

—Use $NAME->MEMBER to read struct members

Software and Solutions Group (il'l te |)

27

Probes: Tapsets

e Tapsets provide abstractions of common probe points

syscall.*

—Probes each system call, with name and argstr

process.*

—Probes process lifetime events

socket. *

—Probes socket-related events

e And many more...

@ Software and Solutions Group ‘ in te |)

28

Writing Functions

eFor common functionality in your script, use functions

function FNAME: type (ARG1l: type, ARG2:type) {
/* code to run when FNAME is called */
return SOMETHING

—The :type's are optional, and may be :string or :long

>Return type may be :unknown for no return value

Software and Solutions Group (i n te |)

29

Built-in Functions

eSystemTap includes many functions

—Printing
print (), println(), printd(), printf (),
sprint (), sprintln(), sprintd(), sprintf()

—Strings
strlen(), substr (), isinstr (), strtol()

—Timestamps
get cycles(), gettimeofday s(), gettimeofday ns()

—Context
cpu(), execname (), tid(), pid(), uid(),
backtrace (), print stack(), print backtrace(),
pp () , probefunc (), probemod ()

—See man stapfuncs for details and many more

k)

Software and Solutions Group (i n te |)

Fibonacci Example

cat fibl.stp
probe begin { println(fib($1)); exit() }
function fib(n) {
if (n < 0) return O
if (n == 1) return 1
return fib(n - 1) + fib(n - 2)
}

stap fibl.stp 4
3

eNow run it again to compute fib(6)
eHow about fib(10)?

Software and Solutions Group (il'l te |)

Ky |

Safety in Recursion

eKernel stack space is limited, and fatal to overflow
eSystemTap variables are allocated off-stack

—Still, fixed resources have limits

e The runtime explicitly checks the call depth (nesting) on each
call, and errors out if too deep

Software and Solutions Group (il'l te |)

32

Fibonacci Example 2

cat fib2.stp

probe begin { println(fib($1)); exit() }

global fibdata

function fib(n) {
fibdata[0] = 0
fibdata[l] = 1;
for (1i=2; i<=n; ++1i)

fibdata[i] = fibdata[i-1] + fibdata[i-2]

return fibdata[n]

}

stap fib2.stp 10
55

eHow about fib(3000)?

Software and Solutions Group (il'l te |)

33

Safety in Array Size

eProbes never allocate memory in the handler

—Allocation takes too much time
—Allocating too much kernel memory starves the system

eThus, all arrays are pre-allocated

—When the array gets too big, an error is thrown

Software and Solutions Group (il'l te |)

34

Fibonacci Example 2, continued

e Add a "delete" statement to the for-loop to limit the array size
—Individual entries can be removed with "delete ARRAY[INDEX]"

—Don't forget to add {} to allow multiple statements in the for-loop

eNow can you compute fib(3000)?
eHow about fib(10000)?

Software and Solutions Group (il'l te |)

35

Safety in Probe Execution Time

el engthy probe handlers could degrade the system
e Infinite probe handlers would be fatal
eSystemTap counts statements and enforces an upper bound

—Running too long throws an error

eBoth of these will be detected and killed
while (1) { ... } /* deliberate infinite loop */
for (i=0; i<10; +i) { ... } /* innocent typo */

Software and Solutions Group (il'l te |)

36

Safety Summary

eTo ensure safe execution, the script compiler guarantees:
—Limited recursion depth
—Limited array size
—Limited execution time
eData checks are also performed
—Divide by zero
—String overflow
—Pointer access

oIf you find a vulnerability, we want to know!

Software and Solutions Group (il'l te |)

37

A Tracing Example

eSimple command line to trace all "open" system calls:

stap -e 'probe syscall.open {
printf ("%$s[%d] open(%s)\n",
execname () , pid(), argstr)
} 1
irgbalance[2129] open("/proc/net/dev", O RDONLY)
sendmail[2486] open("/proc/loadavg", O RDONLY)

(etc.)

Software and Solutions Group (il'l te |)

38

A Bigger Tracing Example

eSimple command line to trace all system calls:

stap -e 'probe syscall.* {
if (pid() == stp pid()) next
printf ("%$s[%d] %s(%s)\n",
execname () , pid(), name, argstr)
} 1
(lots of output...)

e(Q: Why would I want to filter out a certain PID?

Software and Solutions Group (il'l te |)

K1)

Associative Arrays

eIndexed by one or more long and/or string indexes
e\Value can be a long, a string, or a statistical accumulation

eArrays have a fixed size, which can be declared
global foo # foo gets the default size
global bar[100] # bar will have 100 slots

e Test membership with the "in" operator

if (42 in foo) println("foo has 42")

if (["bar", 42] in foo) println("foo has [\"bar\", 42]")
elterate all entries with "foreach"

foreach (x in foo) printf ("foo[%d] = %d\n", x, fool[x])

foreach ([s, x] in fo0)
printf ("foo[%s, %d] = %d\n", s, x, fool[x])

Software and Solutions Group (| n te |)

40

Example Array

cat syscount.stp

global syscalls

probe syscall.* { syscalls[name] += 1 }

probe timer.s(10) {
printf ("\n%8s %s\n", "count", "name")
foreach (name in syscalls- limit 10)

printf ("%$8d %$s\n", syscalls[name], name)

delete syscalls

}

stap syscount.stp
98 automount
22 stapio

Software and Solutions Group (il'l te |)

4

Statistics

eScalable accumulation with <<«

e Aggregates values only when read
e Extract numeric values with function-like operators
@count (v) @sum(v) @min(v) @max(v) Ravg(v)

e Extract histograms that may be printed, indexed, or iterated
@hist linear (v, start, stop, interval)

@hist log(wv)

Software and Solutions Group (il'l te |)

42

Example Statistic

cat syscount2.stp

global syscalls

probe syscall.* { syscalls[name] <<< 1 }

probe timer.s(10) {
printf ("\n%8s %s\n", "count", "name")
foreach (name in syscalls- limit 10)

printf ("%8d %s\n",
@count (syscalls[name]), name)

delete syscalls

}

stap syscount2.stp
98 automount
22 stapio

Software and Solutions Group (il'l te |)

43

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

44

Track Scheduling Time

eIs it bad to have a lot of processes/threads?
—Just resident -- not necessarily bad
—Active & frequently switching -- may be oversubscribed

e Use schedtime.stp
—Peek into the kernel scheduler
—Visualize current activity
—Evaluate system load

Software and Solutions Group (il'l te |)

45

Track Scheduling Time (script)

cat schedtime.stp
global timestamp, stat

probe scheduler.cpu on {
if ('idle)
timestamp[cpu()] = gettimeofday ns()
}

probe scheduler.cpu off {
if ('idle && timestamp[cpu()])
stat[cpu()] <<< gettimeofday ns() - timestamp[cpu()]
}

probe timer.s(2) {
printf ("\n \n")
foreach (cpu+ in stat) {
printf ("\nCPU%d count %d min %d max %d avg %d\n", cpu,
@count(stat[cpu]), @min(stat[cpul]),
@max (stat[cpu]), Ravg(stat[cpu]))
print (@hist log(stat[cpu]))

}
delete stat

Software and Solutions Group

Track Scheduling Time (output)

stap schedtime.stp

CPUO count 365 min 3299 max 175394 avg 9042

value |- - - —————"——"—"——"——— == count
512 | 0
1024 | 0
2048 |QQREEEECCRRRRLRLRLRLRLRLCLCAEAAACLLLARRRRRLRLRALCAAMEAEQEME 210
4096 |QQEEEEEEQQQRRQRQQREQREQEQEQEQE 112
8192 |d 6
16384 |@@@ 18
32768 |@Q@ 13
65536 | 3
131072 | 3
262144 | 0
524288 | 0

CPUl count 117 min 3930 max 242673 avg 10635

Software and Solutions Group (| n te |)

47

Track Scheduling Time (follow-up)

e Possible modifications
—Aggregate by process names
—Report the most frequent switchers

Software and Solutions Group (il'l te |)

48

Top Process I/0

e The disk is constantly busy -- why?

—Kill the rouge process dragging down the system
—Find ways to tweak I/O usage

eUse pid-iotop.stp

—Quickly see which processes are responsible for the most I/0

Software and Solutions Group (il'l te |)

49

Top Process I/0 (script)

cat pid-iotop.stp
Based on a script by Mike Grundy and Mike Mason from IBM
global reads, writes
probe vfs.read { reads[pid()] += bytes to read }
probe vEs.write { writes[pid()] += bytes to write }

print top 5 IO users by pid every 5 seconds
probe timer.s(5) {
printf ("\n%-10s\t%10s\t%1l5s\n", "Process ID",
"KB Read", "KB Written")
foreach (id in reads- limit 5)
printf ("$-10d\t%10d\t%15d\n", id,
reads[id] /1024, writes[id]/1024)
delete reads
delete writes

Software and Solutions Group (| n te |)

50

Top Process I/0 (output)

stap pid-iotop.stp

Process ID KB Read KB Written
25553 3216 0
4272 24 0
4253 16 0
4048 16 0
4230 16 0
Process ID KB Read KB Written
25553 3328 0
19033 16 0
4253 16 0
4246 12 0
2132 8 0

Software and Solutions Group (| n te |)

51

Top Process 1/0 (follow-up)

e Possible modifications
—Sort by writes or reads+writes
—Report the top I/0O users instead

Software and Solutions Group (il'l te |)

52

Kernel Profiling

e\What's my kernel up to?
—Perhaps top is reporting high %sys -- why?

eUse pf2.stp
—Sample kernel function location
—Report hotspots

Software and Solutions Group (il'l te |)

53

Kernel Profiling (script)

From http://sourceware.org/systemtap/wiki/WSKernelProfile

cat pf2.stp

global profile, pcount

probe timer.profile ({
pcount <<< 1
fn = probefunc ()
if (fn '= "") profile[fn] << 1

}

probe timer.ms (4000) {
printf ("\n--- %d samples recorded:\n", Qcount (pcount))
foreach (f in profile- 1limit 10) {

printf ("%$s\t%d\n", £, @Qcount(profile[f]))

}
delete profile
delete pcount

Software and Solutions Group (| n te |)

54

http://sourceware.org/systemtap/wiki/WSKernelProfile

Kernel Profiling (output)

stap pf2.stp
--—- 109 samples recorded:
mwait idle 71
check poison obj 4
_spin _unlock irqgrestore 2
dbg redzonel 1
kfree 1
kmem cache free 1
_spin _unlock irqg 1
end buffer write sync 1
lock_acquire 1

--- 108 samples recorded:
mwait idle 91

check poison obj 3

_spin unlock irqgq 2

delay tsc 1

Software and Solutions Group (| n te |)

55

Kernel Profiling (follow-up)

e Possible modifications

—Record stack traces
—Aggregate by PID or CPU

Software and Solutions Group (il'l te |)

56

Function Call Counts

e \Which functions are frequently called?

e Use callcount.stp

—Report call counts for all probed functions
—Qutliers should be very obvious

Software and Solutions Group (il'l te |)

57

Function Call Counts (script)

From http://sourceware.org/systemtap/wiki/WSFunctionCallCount

cat callcount.stp
probe every function in any C file under mm/

probe kernel.function ("*@mm/*.c") {
called[probefunc()] <<< 1 # add a count efficiently

}
global called

probe end, timer.ms (30000) {
foreach (fn+ in called) # Sort by function name
(fn in called-) # Sort by call count (in
decreasing order)

printf ("%$s %d\n", fn, @Qcount(called[£fn]))
exit ()

}

58

Software and Solutions Group (| n te |)

http://sourceware.org/systemtap/wiki/WSFunctionCallCount

Function Call Counts (output)

stap callcount.stp
ClearSlabFrozen 50
INIT LIST HEAD 3641
PageUptodate 2
SetSlabFrozen 50
SlabFrozen 1438
__ClearPageTail 7
__SetPageTail 8
__alloc_pages 204

zap pte range 52

zone statistics 204
zone_ to nid 21

zone watermark ok 204
zonelist policy 204

Software and Solutions Group (| n te |)

59

Function Call Counts (follow-up)

e Possible modifications
—Parameterize the probe point and explore
—Filter only the top N results
—Probe returns too, and aggregate call times

Software and Solutions Group (il'l te |)

60

Call Graph Tracing

e\When I call a function, what happens next?

e Use para-callgraph.stp
—Start tracing when a trigger is called
—Visualize all functions that are invoked
—See how long each step takes

Software and Solutions Group (il'l te |)

61

Call Graph Tracing (script)

From http://sourceware.org/systemtap/wiki/WSCallGraph

cat para-callgraph.stp
function trace(entry p) {
if(tid() in trace)
printf("%s%s%s\n",thread_indent(entry_p),
(entry p>0?"->"."<-"),
probefunc())

}

global trace
probe kernel. function(@1l) .call ({

if (pid() == stp _pid()) next # skip our own helper process
trace[tid()] =1
trace (1)

}

probe kernel.function(@1l) .return {
trace(-1)
delete trace[tid()]

}
probe kernel. function(@2) .call { trace(l) }

probe kernel.function(@2) .return { trace(-1) }

62

@ Software and Solutions Group ‘ in te |)

http://sourceware.org/systemtap/wiki/WSCallGraph

Call Graph Tracing (output)

stap para-callgraph.stp sys read '*@fs/*.c'

0

9
13
18
24
29
36
42
46
50

clock-applet (4325)

clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :
clock-applet (4325) :

clock-applet (4325)

:->sys_read
->fget light
<-fget light
->vfs read
->rw_verify area
<-rw _verify area
->do_sync_read
<-do_sync_read
<-vfs_read
:<-sys_read

Software and Solutions Group (| n te |)

63

Call Graph Tracing (follow-up)

e Possible modifications
—Explore different kernel subsystems
—Add filters to narrow down results

Software and Solutions Group (il'l te |)

64

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

65

Advanced SystemTap

e Guru mode

elLive kernel patching

e Prototyping new modules

e Building test suites for kernel code
e Define and refine tapsets

Software and Solutions Group (il'l te |)

66

SystemTap Guru

"Stop protecting me -- I know what I'm doing!"

-0k, you're the boss. Just use the -g option.
oAll $target variables become writable

eYou can write embedded-C in your scripts!

eSend all complaints to $USER@Iocalhost

Software and Solutions Group (il'l te |)

67

Using Embedded-C

e At the top level, bracket C code in ${ ... %}
—Add new functions, #include files, etc.

e Create a function that's callable from the script language
—Arguments are passed in THIS->argname
—Return value is stored in THIS-> retvalue

—Example:
function divide:long(num:long, den:long) $%{

THIS-> retvalue = THIS->num / THIS->den;

%}

—Q: What are two problems with this divide function?

Software and Solutions Group (il'l te |)

68

Live Kernel Patching

eFebruary 2008: local-root exploit in sys_vmsplice!
—Fix requires a new kernel
—Planning downtime is non-trivial for many admins

e Solution: patch it with a simple script!

stap -g -e 'probe syscall.vmsplice {
printf ("blocking vmsplice (%$s) uid %d pid %d exec %s\n",
argstr, uid(), pid(), execname())
$nr_segs = 0

} !

(posted by Frank Ch. Eigler, http://tinyurl.com/4edbsm)

Software and Solutions Group (i n te |)

69

http://tinyurl.com/4edbsm

Easy Kernel Modules
e\With guru-mode C code, write anything you want

51

/* write #include’s, functions, etc. */

5}

function init() %{

/* call various init routines... */
if (error)
CONTEXT->last error = "some error string";

o°

}

function shutdown () %{
/* call various shutdown routines... */

5}

probe begin { init() }
probe end { shutdown() }

Software and Solutions Group (il'l te |)

70

Kernel testing

ePlace probes on key points of your own code
e Check assertions about correct behavior
e Modify variables to inject faults

eExample: SCSI Fault Injection
http://sourceforge.net/projects/scsifaultinjtst

Software and Solutions Group ‘ il'l te I)

71

http://sourceforge.net/projects/scsifaultinjtst

Writing Tapsets

e\Write a probe alias to abstract implementation details
e Extract useful arguments

probe syscall.open =
kernel. function("sys open") ?,
kernel. function("compat sys open") ?,
kernel. function("sys32 open") *?

name = "open'"
filename = user_string($filename)
flags = $flags
mode = $mode
if (flags & 64)
argstr = sprintf ("%s, %s, $%#o", user_string_quoted($filename),
_sys_open_flag str($flags), Smode)
else
argstr = sprintf("%s, %s", use:_string_quoted($filename),
_sys_open_flag str($flags))

72

Software and Solutions Group (il'l te |)

SystemTap Tutorial

Getting Started

Writing Scripts

Examples and War Stories
Advanced Usage

Future and Conclusion

Software and Solutions Group (il'l te |)

[£]

SystemTap Future Features

e Kernel Markers

—Static, low-latency probe points in the kernel

—Works now, but few markers are available
stap -1 'kernel.mark("*")'

e User-space Probes
—Some prototype availability today with CONFIG_UTRACE=y
process (PID) , process ("PATH")
>Base for probes on a certain PID or executable PATH
>Probe raw system calls with .syscall, parameter $syscall

>Probe lifetime events for the process or its threads:
.begin, .end, .thread.begin, .thread.end

process (PID) .statement (ADDRESS) .absolute

>Place a probe at a raw address in a process

Software and Solutions Group (| n te |)

74

Conclusion

eSystemTap is:
—Dynamic
—Safe
—Flexible

—Not so painful
—Indispensable

Software and Solutions Group ‘ il'l te I)

75

Disclaimer

e This work represents the view of the author and does not
necessarily represent the view of Intel.

eIntel is a registered trademark of Intel Corporation.
elLinux is a registered trademark of Linus Torvalds.

e Other company, product, and service names may be
trademarks or service marks of others.

Software and Solutions Group (il'l te |)

76

Project Contact Information

eWeb: http://sourceware.org/systemtap/
—Wiki: http://sourceware.org/systemtap/wiki/
—FAQ: http://sourceware.org/systemtap/wiki/SystemTapFAQ

e Mailing list: systemtap@sourceware.org
eIRC: join #systemtap on irc.freenode.net

Software and Solutions Group (il'I|ZE|

77

http://sourceware.org/systemtap/
http://sourceware.org/systemtap/wiki/
http://sourceware.org/systemtap/wiki/SystemTapFAQ
mailto:systemtap@sourceware.org

	Dynamic Tracing and Performance Analysis Using SystemTap
	Speaker Information
	SystemTap Tutorial
	SystemTap
	Slide 5
	Tutorial Live CD
	Existing Tools
	Enter SystemTap
	Target Users
	Use for Developers
	Use for Administration / Support
	Use in Academia
	Get it on Fedora
	Get it on Ubuntu
	User Security
	Obligatory Start
	Slide 17
	Slide 18
	Script Language Basics
	Data Types and Operators
	Script statements
	Script Arguments
	Writing Probes
	Probes: Script Lifetime
	Probes: Timers
	Probes: Kernel Functions
	Probes: Kernel Function Variables
	Probes: Tapsets
	Writing Functions
	Built-in Functions
	Fibonacci Example
	Safety in Recursion
	Fibonacci Example 2
	Safety in Array Size
	Fibonacci Example 2, continued
	Safety in Probe Execution Time
	Safety Summary
	A Tracing Example
	A Bigger Tracing Example
	Associative Arrays
	Example Array
	Statistics
	Example Statistic
	Slide 44
	Track Scheduling Time
	Track Scheduling Time (script)
	Track Scheduling Time (output)
	Track Scheduling Time (follow-up)
	Top Process I/O
	Top Process I/O (script)
	Top Process I/O (output)
	Top Process I/O (follow-up)
	Kernel Profiling
	Kernel Profiling (script)
	Kernel Profiling (output)
	Kernel Profiling (follow-up)
	Function Call Counts
	Function Call Counts (script)
	Function Call Counts (output)
	Function Call Counts (follow-up)
	Call Graph Tracing
	Call Graph Tracing (script)
	Call Graph Tracing (output)
	Call Graph Tracing (follow-up)
	Slide 65
	Advanced SystemTap
	SystemTap Guru
	Using Embedded-C
	Live Kernel Patching
	Easy Kernel Modules
	Kernel testing
	Writing Tapsets
	Slide 73
	SystemTap Future Features
	Conclusion
	Disclaimer
	Project Contact Information
	Slide 78

