
4.1

CS356 Unit 4

Intro to
x86 Instruction Set

4.2

Why Learn Assembly

• To understand something of the limitation of
the HW we are running on

• Helpful to understand performance

• To utilize certain HW options that high-level
languages don't allow (e.g. operating systems,
utilizing special HW features, etc.)

• To understand possible security vulnerabilities
or exploits

• Can help debugging

4.3

Compilation Process

• Demo of assembler

– $ g++ -Og -c -S file1.cpp

• Demo of hexdump

– $ g++ -Og -c file1.cpp

– $ hexdump -C file1.o | more

• Demo of
objdump/disassembler

– $ g++ -Og -c file1.cpp

– $ objdump -d file1.o

void abs(int x, int* res)
{
if(x < 0)
*res = -x;

else
*res = x;

}

Disassembly of section .text:

0000000000000000 <_Z3absiPi>:
0: 85 ff test %edi,%edi
2: 79 05 jns 9 <_Z3absiPi+0x9>
4: f7 df neg %edi
6: 89 3e mov %edi,(%rsi)
8: c3 retq
9: 89 3e mov %edi,(%rsi)
b: c3 retq

Original Code

Compiler Output

(Machine code & Assembly)

Notice how each instruction is

turned into binary (shown in hex)

CS:APP 3.2.2

4.4

Where Does It Live

• Match (1-Processor / 2-Memory / 3-Disk Drive) where each
item resides:
– Source Code (.c/.java) = 3

– Running Program Code = 2

– Global Variables = 2

– Compiled Executable (Before It Executes) = 3

– Current Instruction Being Executed = 1

– Local Variables = 2

(1) Processor (2) Memory (3) Disk Drive

4.5

BASIC COMPUTER ORGANIZATION

4.6

Processor

• Performs the same 3-step
process over and over again
– Fetch an instruction from

memory

– Decode the instruction
• Is it an ADD, SUB, etc.?

– Execute the instruction
• Perform the specified operation

• This process is known as the
Instruction Cycle

Processor

Memory

ADD

SUB

CMP

Arithmetic

Circuitry

Decode

Circuitry

1 Fetch

Instruction

It’s an ADD

Add the

specified values

2

3

System Bus

4.7

Processor

• 3 Primary Components inside a processor
– ALU
– Registers
– Control Circuitry

• Connects to memory and I/O via address, data, and control
buses (bus = group of wires)

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

Bus

Processor

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

R0-R31

Control
0PC/IP

CS:APP 1.4

4.8

Arithmetic and Logic Unit (ALU)

• Digital circuit that performs arithmetic
operations like addition and subtraction along
with logical operations (AND, OR, etc.)

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

0x0123

0x04560x0579

ADD

4.9

Registers

• Recall memory is SLOW compared to a processor

• Registers provide fast, temporary storage locations
within the processor

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out
0x0123

0x0456

PC/IP

R0-Rn-1

4.10

General Purpose Registers

• Registers available to software instructions for use
by the programmer/compiler

• Programmer/compiler is in charge of using these
registers as inputs (source locations) and outputs
(destination locations)

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

R0-Rn-1

PC/IP

4.11

What if we didn’t have registers?

• Example w/o registers: F = (X+Y) – (X*Y)
– Requires an ADD instruction, MULtiply instruction, and SUBtract

Instruction
– w/o registers

• ADD: Load X and Y from memory, store result to memory
• MUL: Load X and Y again from mem., store result to memory
• SUB: Load results from ADD and MUL and store result to memory
• 9 memory accesses

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

R0-Rn-1

X

Y

F

PC/IP

4.12

What if we have registers?

• Example w/ registers: F = (X+Y) – (X*Y)
– Load X and Y into registers

– ADD: R0 + R1 and store result in R2

– MUL: R0 * R1 and store result in R3

– SUB: R2 – R3 and store result in R4

– Store R4 back to memory

– 3 total memory access

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

R0-Rn-1

X

Y

X

Y F

PC/IP

4.13

Other Registers

• Some bookkeeping information is needed to make the
processor operate correctly

• Example: Program Counter/Instruction Pointer (PC/IP) Reg.
– Recall that the processor must fetch instructions from memory before

decoding and executing them

– PC/IP register holds the address of the next instruction to fetch

Processor

Addr

Data

Control

Memory

0

1

2

3

4

5

6

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

PC/IP

R0-Rn-1

4.14

Fetching an Instruction

• To fetch an instruction
– PC/IP contains the address of the instruction

– The value in the PC/IP is placed on the address bus and the memory is
told to read

– The PC/IP is incremented, and the process is repeated for the next
instruction

Processor

Addr

Data

Control

Memory

inst. 2

0

1

2

3

4

FF

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

0PC/IP

R0-Rn-1

inst. 1

inst. 3

inst. 4

inst. 5

…

PC/IP = Addr = 0

Data = inst.1 machine code

Control = Read

4.15

Fetching an Instruction

• To fetch an instruction
– PC/IP contains the address of the instruction

– The value in the PC/IP is placed on the address bus and the memory is
told to read

– The PC/IP is incremented, and the process is repeated for the next
instruction

Processor

Addr

Data

Control

Memory

inst. 2

0

1

2

3

4

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

1PC/IP

R0-Rn-1

inst. 1

inst. 3

inst. 4

inst. 5

PC/IP = Addr = 1

Data = inst.2 machine code

Control = Read

FF

…

4.16

Control Circuitry

• Control circuitry is used to decode the instruction and then
generate the necessary signals to complete its execution

• Controls the ALU

• Selects Registers to be used as source and destination
locations

Processor

Addr

Data

Control

ALU
ADD,

SUB,

AND,

OR

op.

in1

in2

out

R0-Rn-1

Control

Memory

inst. 2

0

1

2

3

4

inst. 1

inst. 3

inst. 4

inst. 5

0PC/IP

FF

…

4.17

Control Circuitry

• Assume 0x0201 is machine code for an ADD instruction of R2
= R0 + R1

• Control Logic will…
– select the registers (R0 and R1)

– tell the ALU to add

– select the destination register (R2)

Processor

Addr

Data

Control

ALU
ADD

ADD

in1

in2

out
0x0123

0x0456

0x0579

0PC/IP

R0-Rn-1

Control

Memory

inst. 2

0

1

2

3

4

0201

inst. 3

inst. 4

inst. 5

0

0201

FF

…

4.18

Summary

• Registers are used for fast, temporary storage in the
processor

– Data (usually) must be moved into registers

• The PC or IP register stores the address of the next
instruction to be executed

– Maintains the current execution location in the program

4.19

UNDERSTANDING MEMORY

4.20

Memory and Addresses

• Set of cells that each store
a group of bits
– Usually, 1 byte (8 bits) per

cell

• Unique address (number)
assigned to each cell
– Used to reference the value

in that location

• Data and instructions are
both stored in memory and
are always represented as a
string of 1’s and 0’s

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

Address Data

Memory

Device

…

…

A
d

d
re

s
s

 I
n

p
u

ts
D

a
ta

 I
n

p
u

ts
/O

u
tp

u
ts

A[0]

A[n-1]

D[0]

D[7]

4.21

Reads & Writes

• Memories perform 2 operations
– Read: retrieves data value in a

particular location (specified using
the address)

– Write: changes data in a location
to a new value

• To perform these operations a
set of address, data, and control
wires are used to talk to the
memory
– Note: A group of wires/signals is

referred to as a ‘bus’
– Thus, we say that memories have

an address, data, and control bus.

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

11010010

01001011

10010000

11110100

01101000

00000110

…

00001011

0

1

2

3

4

5

FFFF

2

10010000

Read

Addr.

Data

Control

Addr.

Data

Control

5

00000110

Write

A Write Operation

A Read Operation

Processor

Processor

System Bus (address,

data, control wires)

4.22

Memory vs. I/O Access
• Processor performs reads and writes to

communicate with memory and I/O devices
– I/O devices have memory locations that contain

data that the processor can access

– All memory locations (be it RAM or I/O) have
unique addresses which are used to identify
them

– The assignment of memory addresses is known
as the physical memory map

Video

Interface

FE may

signify a

white dot at

a particular

location

…

8000000

Processor Memory

A D C

800

FE

WRITE

code

data

…

0

0x3ffffff

FE

01

Keyboard

Interface

614000000

‘a’ = 61 hex

in ASCII

4.23

Address Space Size and View

• Most computers are byte-addressable
– Each unique address corresponds to 1-byte of

memory (so we can access char variables)

• Address width determines max amount of
memory

– Every byte of data has a unique address

– 32-bit addresses => 4 GB address space

– 36-bit address bus => 64 GB address space

Processor
Memory

movl %rax,(%rdx)

addl %rcx,%rax

...

Code

User Stack

0xf_ffff_ffff

0x0

OS Code

OS Stack

Globals

Logical View

Logical view of
address/memory

space

Logical Address & Data
bus widths = 64-bits

I/O Dev 1

I/O Dev 2

System (Addr. + Data) Bus

(Addr = 36-39 bits, Data = 64)

4.24

Data Bus & Data Sizes

• Moore's Law meant we could build systems with
more transistors

• More transistors meant greater bit-widths

– Just like more physical space allows for wider
roads/freeways, more transistors allowed us to move
to 16-, 32- and 64-bit circuitry inside the processor

• To support smaller variable sizes (char = 1-byte) we
still need to access only 1-byte of memory per
access, but to support int and long ints we
want to access 4- or 8-byte chunks of memory per
access

• Thus the data bus (highway connecting the
processor and memory) has been getting wider (i.e.
64-bits)

– The processor can use 8-, 16-, 32- or all 64-bits of the
bus (lanes of the highway) in a single access based on
the size of data that is needed

Processor Data Bus
Width

Intel 8088 8-bit

Intel 8086 16-bit

Intel 80386 32-bit

Intel Pentium 64-bit

Processor

Memory Bus

(64-bit data bus)

Logical Data bus width =
64-bits

4.25

Intel Architectures

Processor Year Address Size Data Size

8086 1978 20 16

80286 1982 24 16

80386/486 ’85/’89 32 32

Pentium 1993 32 32

Pentium 4 2000 32 32

Core 2 Duo 2006 36 64

Core i7

(Haswell)

2013 39 64

4.26

x86-64 Data Sizes

Integer

• 4 Sizes Defined
– Byte (B)

• 8-bits

– Word (W)

• 16-bits = 2 bytes

– Double word (L)

• 32-bits = 4 bytes

– Quad word (Q)

• 64-bits = 8 bytes

Floating Point

• 3 Sizes Defined
– Single (S)

• 32-bits = 4 bytes

– Double (D)

• 64-bits = 8 bytes

• (For a 32-bit data bus, a
double would be accessed
from memory in 2 reads)

In x86-64, instructions generally specify what size data to
access from memory and then operate upon.

CS:APP 3.3

4.27

x86-64 Memory Organization
• Because each byte of memory has its

own address we can picture memory
as one column of bytes (Fig. 2)

• But, 64-bit logical data bus allows us to
access up to 8-bytes of data at a time

• We will usually show memory
arranged in rows of 4-bytes (Fig. 3) or
8-bytes
– Still with separate addresses for each byte

5A 0x000000

13

F8

…

0x000001

0x000002

Logical Byte-Oriented View of Mem.

Proc. Mem.

64

40

A

D

5A137C

2933

…

0x000008

0x000004

0x000000

Logical DWord-Oriented View

F8

AD8E

int x,y=5;z=8;

x = y+z;

Recall variables live

in memory & need to

be loaded into the

processor to be used

0123

4567

2933AD8E
89ab

Fig. 2

Fig. 3

4.28

Memory & Word Size

• To refer to a chunk of memory we
must provide:

• The starting address

• The size: B, W, D, L

• There are rules for valid starting
addresses

• A valid starting address must be a multiple
of the data size

• Words (2-byte chunks) must start on an
even (divisible by 2) address

• Double words (4-byte chunks) must start
on an address that is a multiple of
(divisible by) 4

• Quad words (8-byte chunks) must start on
an address that is a multiple of (divisible
by) 8

Byte 1Byte 2Byte 3 Byte 0

Word 0Word 2

Double Word 0

0x4007

0x4006

0x4005

0x4004

0x4003

0x4002

0x4001

0x4000

DWord

0x4004

DWord

0x4000

Byte

Address

Byte 5Byte 6Byte 7 Byte 4

Word 4Word 6

Double Word 4

Q
u

a
d

 W
o

rd
 0

Q
W

o
rd

4
0
0
0

W
o

rd

4
0

0
6

W
o

rd

4
0

0
4

W
o

rd

4
0

0
2

W
o

rd

4
0

0
0

…

…

CS:APP 3.9.3

4.29

Endian-ness

• Endian-ness refers to the two
alternate methods of ordering the
bytes in a larger unit (word, DWORD,
etc.)
– Big-Endian

• PPC, Sparc

• MS byte is put at the starting address

– Little-Endian
• used by Intel processors / original PCI bus

• LS byte is put at the starting address

• Some processors (like ARM) and
busses can be configured for
either big- or little-endian

The DWORD value:

Big-Endian Little-Endian

0 x 1 2 3 4 5 6 7 8

can be stored differently

78

0x00

56

340x01

0x02

12

0x03 12

0x00

34

560x01

0x02

78

0x03

CS:APP 2.1.3

4.30

Big-endian vs. Little-endian

• Big-endian
– makes sense if you view your

memory as starting at the
top-left and addresses
increasing as you go down

• Little-endian
– makes sense if you view your

memory as starting at the
bottom-right and addresses
increasing as you go up

12345678000000

000004

000008

00000C

000010

…

000014

000000

000004

000008

00000C

000010

…

000014

12345678

0 1 2 3

A
d

d
re

s
s
e
s
 in

c
re

a
s
in

g
 d

o
w

n
w

a
rd

A
d

d
re

s
s
e
s
 i

n
c
re

a
s
in

g
 u

p
w

a
rd

3 2 1 0

1 2 3 4 5 6 7 8

Byte 0 Byte 1 Byte 2 Byte 3

1 2 3 4 5 6 7 8

Byte 3 Byte 2 Byte 1 Byte 0

4.31

12345678000000

000004

000008

00000C

000010

…

000014

1 2 3 4 5 6 7 8

Byte 0 Byte 1 Byte 2 Byte 3

000000

000004

000008

00000C

000010

…

000014

78563412

7 8 5 6 3 4 1 2

Byte 3 Byte 2 Byte 1 Byte 0

A
d

d
re

s
s
e
s
 in

c
re

a
s
in

g
 d

o
w

n
w

a
rd

A
d

d
re

s
s
e
s
 i

n
c
re

a
s
in

g
 u

p
w

a
rd

Big-endian vs. Little-endian

• Issues arise when transferring data between different systems
– Byte-wise copy of data from big-endian system to little-endian system

– Major issue in networks (little-endian computer => big-endian computer) and
even within a single computer (System memory => I/O device)

Copy byte 0 to byte 0,

byte 1 to byte 1, etc.

DWORD @ 0 in big-endian

system is now different that

DWORD @ 0 in little-endian

system

DWORD @ addr. 0

Big-Endian Little-Endian
0 1 2 3

3 2 1 0

Intel is

LITTLE-ENDIAN

4.32

Summary

• The processor communicates with all other
components in the processor via reads/writes using
unique addresses for each component

• Memory can be accessed in different size chunks
(byte, word, dword, quad word)

• Alignment rules: data of size n should start on an
address that is a multiple of size n
– dword should start on multiples of 4

– Size 8 should start on an address that is a multiple of 4

• x86 uses little-endian
– The start address of a word (or dword or qword) refers to the LS-byte

4.33

X86-64 ASSEMBLY

4.34

x86-64 Instruction Classes

• Data Transfer (mov instruction)

– Moves data between processor & memory (loads and saves variables between
processor and memory)

– One operand must be a processor register (can't move data from one memory
location to another)

– Specifies size via a suffix on the instruction (movb, movw, movl, movq)

• ALU Operations

– One operand must be a processor register

– Size and operation specified by instruction (addl, orq, andb, subw)

• Control / Program Flow

– Unconditional/Conditional Branch (cmpq, jmp, je, jne, jl, jge)

– Subroutine Calls (call, ret)

• Privileged / System Instructions

– Instructions that can only be used by OS or other “supervisor” software (e.g.
int to access certain OS capabilities, etc.)

4.35

Operand Locations

• Source operands must be in one
of the following 3 locations:
– A register value (e.g. %rax)

– A value in a memory location (e.g.
value at address 0x0200e8)

– A constant stored in the instruction
itself (known as an ‘immediate’
value)
[e.g. ADDI $1,D0]

– The $ indicates the
constant/immediate

• Destination operands must be
– A register

– A memory location (specified by its
address)

Mem.
Inst.

Proc.

A

D ...

Inst.

400

Data

401

Data

Reg.

ALU

...

Reg.

4.36

Intel x86 Register Set

• 8-bit processors in late 1970s

– 4 registers for integer data: A, B, C, D

– 4 registers for address/pointers: SP (stack pointer), BP
(base pointer), SI (source index), DI (dest. index)

• 16-bit processors extended registers to 16-bits but
continued to support 8-bit access

– Use prefix/suffix to indicate size: AL referenced the lower
8-bits of register A, AH referenced the high 8-bits, AX
referenced the full 16-bit value

• 32-/64-bit processors (see next slide)

4.37

Intel (IA-32/64) Architectures

SP

Stack Pointer

EBP

Base “Frame” Ptr.

SI

Source Index

DI

Dest. Index

EIP

(Instruction Pointer)

Pointer/Index Registers

EAX AX AL

AH

15 0731

EBX BX BL

ECX CX CL

EDX DX DL

General Purpose Registers

EFLAGS

Status Register

RAX

RBX

RCX

RDX

63

RSP

RBP

RSI

RDI

RIP

…

R8DR8

R9

R15

Special Purpose Registers

ESP

EBP

ESI

EDI

R8W R8B

R9D R9W R9B

R15D R15W R15B

CS:APP 3.4

4.38

DATA TRANSFER INSTRUCTIONS

4.39

mov Instruction & Data Size

Byte operations only

access the 1-byte at the

specified address

(Assume start address = A)

• Moves data between memory and processor register

• Always provide the LS-Byte address (little-endian) of the desired data

• Size is explicitly defined by the instruction suffix ('mov[bwlq]') used

• Recall: Start address should be divisible by size of access

Byte

63 0

Word

15

Quad Word

63 0

movb

movw

movl

7 063

0000 0000

63 0

Double Word

31

movq

7654 3210

fedc ba98

A+4

A

7654 3210

fedc ba98

A+4

A

Word operations access

the 2-bytes starting at the

specified address

7654 3210

fedc ba98

A+4

A

Word operations access

the 4-bytes starting at the

specified address

7654 3210

fedc ba98

A+4

A

Word operations access

the 8-bytes starting at the

specified address

Processor Register Memory / RAM

movl zeros the upper bits

movw leaves upper bits unaffected

movb leaves upper bits unaffected

CS:APP 3.4.2

4.40

Mem/Register Transfer Examples

• mov[b,w,l,q] src, dst

• Initial Conditions:
– movl 0x204, %eax

– movw 0x202, %ax

– movb 0x207, %al

– movq 0x200, %rax

– movb %al, 0x4e5

– movl %eax, 0x4e0

7654 3210

fedc ba98

0x00204

0x00200

0000 9800

0000 0000

0x004e4

0x004e0

ffff ffff 1234 5678 rax

0000 0000 7654 3210 rax

7654 3210 fedc ba98 rax

0000 0000 7654 fedc rax

0000 0000 7654 fe76 rax

0000 9800

fedc ba98

0x004e4

0x004e0

movl zeros the upper
bits of dest. reg

Memory / RAM

Processor Register

Treat these instructions as a sequence where one affects the next.

4.41

Immediate Examples

• Immediate Examples

– movl $0xfe1234, %eax

– movw $0xaa55, %ax

– movb $20, %al

– movq $-1, %rax

– movabsq $0x123456789ab, %rax

– movq $-1, 0x4e0

7654 3210

fedc ba98

0x00204

0x00200

ffff ffff 1234 5678 rax

0000 0000 00fe 1234 rax

ffff ffff ffff ffff rax

0000 0000 00fe aa55 rax

0000 0000 00fe aa14 rax

Rules:
• Immediates must be source operand
• Indicate with '$' and can be specified in decimal (default) or hex (start with 0x)
• movq can only support a 32-bit immediate (and will then sign-extend that value to fill the upper 32-bits)
• Use movabsq for a full 64-bit immediate value

ffff ffff

ffff ffff

0x004e4

0x004e0

0000 0123 4567 89ab rax

Memory / RAM

Processor Register

4.42

Move Variations

• There are several variations when the destination of a mov
instruction is a register
– This only applies when the destination is a register

• Normal mov does not affect upper portions of registers (with
exception of movl)

• movzxy will zero-extend the upper portion
– movzbw (move a byte from the source but zero-extend it to a word in

the dest. register)

– movzbw, movzbl, movzbq, movzwl, movzwq

• movsxy will sign-extend the upper portion
– movsbw (move a byte from the source but sign-extend it to a word in

the dest. register)

– movsbl, movsbl, movsbq, movswl, movswq, movslq

4.43

Zero/Signed Move Variations

• Initial Conditions:

– movslq 0x200, %rax

– movzwl 0x202, %eax

– movsbw 0x201, %ax

– movsbl 0x206, %eax

– movzbq %dl, %rax

7654 3210

fedc ba98

0x00204

0x00200

0123 4567 89ab cdef rdx

ffff ffff fedc ba98 rax

ffff ffff 0000 0054 rax

ffff ffff 0000 fedc rax

ffff ffff 0000 ffba rax

0000 0000 0000 00ef rax

Processor Register

Memory / RAM

Treat these instructions as a sequence where one affects the next.

4.44

Why So Many Oddities & Variations

70s

80s

90s

• The x86 instruction set has
been around for nearly 40
years and each new processor
has had to maintain backward
compatibility (support the old
instruction set) while adding
new functionality

• If you wore one clothing
article from each decade you'd
look funny too and have a lot
of oddities

4.45

Summary

• To access different size portions of a register
requires different names in x86 (e.g. AL, AX,
EAX, RAX)

• Moving to a register may involve zero- or sign-
extending since registers are 64-bits

– Long (dword) operations always 0-extend the
upper 32-bits

• Moving to memory never involves zero- or
sign-extending since it memory is broken into
finer granularities

4.46

ADDRESSING MODES

4.47

What Are Addressing Modes

• Recall an operand must be:
– A register value (e.g. %rax)

– A value in a memory location

– An immediate

• To access a memory location we
must supply an address
– However, there can be many ways to

compute an address, each useful in
particular contexts [e.g. accessing an
array element, a[i] vs. object
member, obj.member]

• The ways to specify the operand
location are known as addressing
modes

Mem.
Inst.

Proc.

A

D ...

Inst.

400

Data

401

Data

Reg.

ALU

...

Reg.

4.48

Common x86-64 Addressing Modes

Name Form Example Description

Immediate $imm movl $-500,%rax R[rax] = imm.

Register ra movl %rdx,%rax R[rax] = R[rdx]

Direct

Addressing

imm movl 2000,%rax R[rax] = M[2000]

Indirect

Addressing

(ra) movl (%rdx),%rax R[rax] = M[R[ra]]

Base w/

Displacement

imm(rb) movl 40(%rdx),%rax R[rax] = M[R[rb]+40]

Scaled Index (rb,ri,s†) movl (%rdx,%rcx,4),%rax R[rax] = M[R[rb]+R[ri]*s]

Scaled Index w/

Displacement

imm(rb,ri,s†) movl 80(%rdx,%rcx,2),%rax R[rax] = M[80 + R[rb]+R[ri]*s]

†Known as the scale factor and can be {1,2,4, or 8}
Imm = Constant, R[x] = Content of register x, M[addr] = Content of memory @ addr.

Purple values = effective address (EA) = Actual address used to get the operand

CS:APP 3.4.1

4.49

Register Mode

• Specifies the contents of a register as the
operand

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

0000 0000 1234 5678rdx

0x00204

0x00200

cc55 aa33 0x00208

movq %rax, %rdxIntruc

Both operands in this

example are using

Register Mode

Initial val. of %rdx = ffff ffff ffff ffff

4.50

Immediate Mode

• Specifies the a constant stored in the instruction as the
operand

• Immediate is indicated with '$' and can be specified in hex or
decimal

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

ffff ffff ffff 0005rdx

0x00204

0x00200

cc55 aa33 0x00208

movw $5, %dx Intruc

Source is immediate

mode, Destination is

register mode

Initial val. of %rdx = ffff ffff ffff ffff

4.51

Direct Addressing Mode

• Specifies a constant memory address where the true
operand is located

• Address can be specified in decimal or hex

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

ffff ffff ffff ff55rdx

0x00204

0x00200

cc55 aa33 0x00208

movb 0x20a, %dl Intruc

Source is using Direct

Addressing mode

Initial val. of %rdx = ffff ffff ffff ffff

4.52

Indirect Addressing Mode

• Specifies a register whose value will be used as the effective
address in memory where the true operand is located
– Similar to dereferencing a pointer

• Parentheses indicate indirect addressing mode

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

0000 0000 fedc ba98rdx

0x00204

0x00200

cc55 aa33 0x00208

movl (%rbx), %edxIntruc

Source is using Indirect

Addressing mode

Initial val. of %rdx = ffff ffff ffff ffff

EA=

4.53

Base/Indirect with Displacement
Addressing Mode

• Form: d(%reg)

• Adds a constant displacement to the value in a register and
uses the sum as the effective address of the actual operand in
memory

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

ffff ffff ffff aa33rdx

0x00204

0x00200

cc55 aa33 0x00208

movw 8(%rbx), %dx Intruc

Source is using Base with

Displacement Addressing mode

Initial val. of %rdx = ffff ffff ffff ffff

0000 0200
+ 8
0000 0208EA=

4.54

Base/Indirect with Displacement Example

• Useful for access members of a struct or object

struct mystruct {
int x;
int y;

};
struct mystruct data[3];

int main()
{

for(i=0; i<3; i++){
data[i].x = 1;
data[i].y = 2;

}
} C Code

movq $0x0200,%rbx
loop 3 times {
movl $1, (%rbx)
movl $2, 4(%rbx)
addq $8, %rbx

}

0000 0001

0000 0002

Memory / RAM

0x00210

0x0020c

0000 0002 0x00214

0000 0002

0000 0001

0x00204

0x00200

0000 0001 0x00208

data[0].x

data[0].y

data[1].x

data[1].y

data[2].x

data[2].y

Assembly

0000 0000 0000 0200

rbx

0000 0200
+ 4
0000 0204EA=

0000 0000 0000 0208

0000 0000 0000 0210

1 3 4

1

3

4

2

2

4.55

Scaled Index Addressing Mode

• Form: (%reg1,%reg2,s) [s = 1, 2, 4, or 8]

• Uses the result of %reg1 + %reg2*s as the effective address of
the actual operand in memory

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

0000 0000 cc55 aa33rdx

0x00204

0x00200

cc55 aa33 0x00208

movl (%rbx,%rcx,4), %edxIntruc

Source is using Scaled Index

Addressing mode

Initial val. of %rdx = ffff ffff ffff ffff

0000 0200
+0000 0008
0000 0208EA=

*4

4.56

Scaled Index Addressing Mode Example

• Useful for accessing array elements

int data[6];

int main()
{

for(int i=0; i<6; i++){
data[i] = i;
// *(startAddr+4*i) = i;

}
} C Code

movq $0x0200,%rbx
movl $0, %rcx
loop 6 times {
movl %rcx, (%rbx,%rcx,4)
addl $1, %rcx

}

0000 0004

0000 0003

Memory / RAM

0x00210

0x0020c

0000 0005 0x00214

0000 0001

0000 0000

0x00204

0x00200

0000 0002 0x00208

data[0]

data[1]

data[2]

data[3]

data[4]

data[5]

Assembly

0000 0000 0000 0200

rbx

0000 0200
+ 0
0000 0200EA=

1

2

0000 0000 0000 0000

rcx

*4

0000 0000 0000 0001

0000 0000 0000 0002

0000 0200
+ 4
0000 0204EA=

1

2

3

Array of:
• chars/bytes => Use s=1
• shorts/words => Use s=2
• ints/floats/dwords => Use s=4
• long longs/doubles/qwords => Use s=8

4.57

Scaled Index w/ Displacement Addressing
Mode

• Form: d(%reg1,%reg2,s) [s = 1, 2, 4, or 8]

• Uses the result of d + %reg1 + %reg2*s as the effective
address of the actual operand in memory

15 063

7654 3210

fedc ba98

Processor

Memory / RAM

0000 0000 1234 5678rax

0000 0000 0000 0200rbx

31

0000 0000 0000 0002rcx

ffff ffff ffff ffccrdx

0x00204

0x00200

cc55 aa33 0x00208

movb 3(%rbx,%rcx,4), %dl Intruc

Source is using Scaled Index w/

Displacement Addressing mode

Initial val. of %rdx = ffff ffff ffff ffff

0000 0200
3

+0000 0008
0000 020b

EA=

*4

4.58

Addressing Mode Exercises

– movq (%rbx), %rax

– movl -4(%rbx), %eax

– movb (%rbx,%rcx), %al

– movw (%rbx,%rcx,2), %ax

– movsbl -16(%rbx,%rcx,4), %eax

– movw %cx, 0xe0(%rbx,%rcx,2)

7654 3210

f00d face

0x00200

0x001fc

cdef 89ab 7654 3210 rax

0000 0000 f00d cdef rax

0000 0000 f00d face rax

0000 0000 f00d fa76 rax

0000 0000

0003 0000

0x002e8

0x002e4

0000 0000 ffff ffce rax

0000 0000 0000 0200 rbx

dead beef 0x001f80000 0000 0000 0003 rcx

cdef 89ab 0x00204

Processor Registers

Memory / RAM

4.59

Addressing Mode Examples

Main Memory

%eax %ecx %edx

1 movl $0x7000,%eax 0x0000 7000

2 movl $2,%ecx 0x0000 0002

3 movb (%eax),%dl 0x0000 001d

4 movb %dl,9(%eax)

5 movw (%eax,%ecx),%dx 0x0000 1a1b

6 movw %dx,6(%eax,%ecx,2)

1A 1B 1C 1D

00 00 00 00

1A 1B 1D 00

7000

7004

7008

4.60

Instruction Limits on Addressing Modes

• To make the HW faster and simpler, there are restrictions on
the combination of addressing modes
– Aids overlapping the execution of multiple instructions

• Primary restriction is both operands cannot be memory
locations
– movl 2000, (%eax) is not allowed since both source and destination

are in memory

– To move mem->mem use two move instructions with a register as the
intermediate storage location

• Legal move combinations:
– Imm -> Reg

– Imm -> Mem

– Reg -> Reg

– Mem -> Reg

– Reg -> Mem

4.61

Summary

• Addressing modes provide variations for how
to specify the location of an operand

• EA = Effective Address

– Computed address used to access memory

4.62

ARITHMETIC INSTRUCTIONS

4.63

ALU Instruction(s)

• Performs arithmetic/logic operation on the
given size of data

• Restriction: Both operands cannot be memory

• Format
– add[b,w,l,q] src2, src1/dst

– Example 1: addq %rbx, %rax (%rax += %rbx)

– Example 2: subq %rbx, %rax (%rax -= %rbx)

Work from right->left->right

CS:APP 3.5

4.64

Arithmetic/Logic Operations

• Initial Conditions

– addl $0x12300, %eax

– addq %rdx, %rax

– andw 0x200, %ax

– orb 0x203, %al

– subw $14, %ax

– addl $0x12345, 0x204

7654 3210

0f0f ff00

0x00204

0x00200

ffff ffff 1234 5678 rdx

0000 0000 cc34 cd55 rax

ffff ffff de69 230f rax

ffff ffff de69 23cd rax

ffff ffff de69 2300 rax

Rules:
• addl, subl, etc. zero out the upper 32-bits
• addq, subq, etc. can only support a 32-bit immediate (and will then sign-extend that value to fill the upper

32-bits)

7655 5555

0f0f ff00

0x00204

0x00200

ffff ffff de69 2301 rax

0000 0000 cc33 aa55 rax

Processor Registers

Memory / RAM

4.65

Arithmetic and Logic Instructions
C operator Assembly Notes

+ add[b,w,l,q] src1,src2/dst src2/dst += src1

- sub[b,w,l,q] src1,src2/dst src2/dst -= src1

& and[b,w,l,q] src1,src2/dst src2/dst &= src1

| or[b,w,l,q] src1,src2/dst src2/dst |= src1

^ xor[b,w,l,q] src1,src2/dst src2/dst ^= src1

~ not[b,w,l,q] src/dst src/dst = ~src/dst

- neg[b,w,l,q] src/dst src/dst = (~src/dst) + 1

++ inc[b,w,l,q] src/dst src/dst += 1

-- dec[b,w,l,q] src/dst src/dst -= 1

* (signed) imul[b,w,l,q] src1,src2/dst src2/dst *= src1

<< (signed) sal cnt, src/dst src/dst = src/dst << cnt

<< (unsigned) shl cnt, src/dst src/dst = src/dst << cnt

>> (signed) sar cnt, src/dst src/dst = src/dst >> cnt

>> (unsigned) shr cnt, src/dst src/dst = src/dst >> cnt

==, <, >, <=, >=, !=

(src2 ? src1)

cmp[b,w,l,q] src1, src2
test[b,w,l,q] src1, src2

cmp performs: src2 – src1

test performs: src1 & src2

4.66

lea Instruction

• Recall the exotic addressing modes supported by x86

• The hardware has to support the calculation of the effective
address (i.e. 2 adds + 1 mul [by 2,4,or 8])

• Meanwhile normal add and mul instructions can only do 1
operation at a time

• Idea: Create an instruction that can use the address
calculation hardware but for normal arithmetic ops

• lea = Load Effective Address

– lea 80(%rdx,%rcx,2),$rax; // $rax=80+%rdx+2*%rcx

– Computes the "address" and just puts it in the destination (doesn't
load anything from memory)

Scaled Index w/

Displacement

imm(rb,ri,s) movl 80(%rdx,%rcx,2),%rax R[rax] = M[80 + R[rb]+R[ri]*s]

CS:APP 3.5.1

4.67

lea Examples

• Initial Conditions

– leal (%edx,%ecx),%eax

– leaq -8(%rbx),%rax

– leaq 12(%rdx,%rcx,2),%rax

0000 0089 1234 4000 rdx

0000 0000 1234 4020 rax

ffff ffff ff00 02f8 rax

0000 0089 1234 404c rax

Rules:
• leal zeroes out the upper 32-bits

ffff ffff ff00 0300 rbx

Processor Registers

0000 0000 0000 0020 rcx

4.68

Optimization with lea

// x = %edi
int f1(int x)
{
return 9x+1;

}

f1:
movl %edi,%eax # tmp=x
sall 3, %eax # tmp *= 8
addl %edi,%eax # tmp += x
addl $1, %eax # tmp += 1

ret

Original Code

Unoptimized Output

x86 Convention: The return value of a function is expected in %eax / %rax

f1:
leal 1(%edi,%edi,8),%eax

ret

Optimized With lea Instruction

4.69

mov and add/sub Examples

Instruction M[0x7000] M[0x7004] %rax

5A13 F87C 2933 ABC0 0000 0000 0000 0000

movl $0x26CE071B, 0x7000
26CE 071B 2933 ABC0 0000 0000 0000 0000

movsbw 0x7002,%ax
26CE 071B 2933 ABC0 0000 0000 0000 ffce

movzwq 0x7004,%rax
26CE 071B 2933 ABC0 0000 0000 0000 abc0

movw $0xFE44,0x7006
26CE 071B FF4E ABC0 0000 0000 0000 abc0

addl 0x7000,%eax
26CE 071B FF4E ABC0 0000 0000 26CE B2DB

subb %eax,0x7007
26CE 071B 244E ABC0 0000 0000 26CE B2DB

4.70

Compiler Example 1

// data = %edi
// val = %esi
// i = %edx
int f1(int data[], int* val, int i)
{
int sum = *val;
sum += data[i];
return sum;

}

f1:

movl (%esi), %eax
addl (%edi,%edx,4), %eax

ret

Original Code Compiler Output

x86 Convention: The return value of a function is expected in %eax / %rax

4.71

Compiler Output 2

struct Data {
char c;
int d;

};

// ptr = %edi
// x = %esi
int f1(struct Data* ptr, int x)
{
ptr->c++;
ptr->d -= x;

}

f1:

addb $1, (%edi)
subl %esi, 4(%edi)

ret

Original Code Compiler Output

x86 Convention: The return value of a function is expected in %eax / %rax

4.72

ASSEMBLY TRANSLATION EXAMPLE
Compiler output

4.73

Translation to Assembly

• We will now see some C code and its assembly translation

• A few things to remember:
– Data variables live in memory

– Data must be brought into registers before being processed

– You often need an address/pointer in a register to load/store data
to/from memory

• Generally, you will need 4 steps to translate C to assembly:
– Setup a pointer in a register

– Load data from memory to a register (mov)

– Process data (add, sub, and, or, shift, etc.)

– Store data back to memory (mov)

4.74

Translating HLL to Assembly

• Variables are simply locations in memory

– A variable name really translates to an address in assembly

C operator Assembly Notes

int x,y,z;

…

z = x + y;

movl $0x10000004,%ecx
movl (%ecx), %eax
addl 4(%ecx), %eax
movl %eax, 8(%ecx)

Assume x @ 0x10000004

& y @ 0x10000008

& z @ 0x1000000C

char a[100];

…

a[1]--;

movl $0x1000000c,%ecx
decb 1(%ecx)

Assume array ‘a’ starts @

0x1000000C

• Purple = Pointer init

• Blue = Read data from mem.

• Red = ALU op

• Green = Write data to mem.

4.75

Translating HLL to Assembly

C operator Assembly Notes

int dat[4],x;

…

x = dat[0];

x += dat[1];

movl $0x10000010,%ecx
movl (%ecx), %eax
movl %eax, 16(%ecx)
movl 16(%ecx), %eax
addl 4(%ecx), %eax
movl %eax, 16(%ecx)

Assume dat @ 0x10000010

& x @ 0x10000020

unsigned int y;

short z;

y = y / 4;

z = z << 3;

movl $0x10000010,%ecx
movl (%ecx), %eax
shrl 2, %eax
movl %eax, (%ecx)
movw 4(%ecx), %ax
salw 3, %ax
movw %ax, 4(%ecx)

Assume y @ 0x10000010 &

z @ 0x10000014

• Purple = Pointer init

• Blue = Read data from mem.

• Red = ALU op

• Green = Write data to mem.

4.76

INSTRUCTION SET ARCHITECTURE
How instruction sets differ

4.77

Instruction Set Architecture (ISA)

• Defines the software interface of the processor and
memory system

• Instruction set is the vocabulary the HW can
understand and the SW is composed with

• 2 approaches

– CISC = Complex instruction set computer
• Large, rich vocabulary

• More work per instruction but slower HW

– RISC = Reduced instruction set computer
• Small, basic, but sufficient vocabulary

• Less work per instruction but faster HW

4.78

Components of an ISA

• Data and Address Size
– 8-, 16-, 32-, 64-bit

• Which instructions does the processor support
– SUBtract instruc. vs. NEGate + ADD instrucs.

• Registers accessible to the instructions
– How many and expected usage

• Addressing Modes
– How instructions can specify location of data operands

• Length and format of instructions
– How is the operation and operands represented with 1’s and 0’s

4.79

General Instruction Format Issues

• Different instruction sets specify these differently

– 3 operand instruction set (ARM, PPC)
• Similar to example on previous page

• Format: ADD DST, SRC1, SRC2 (DST = SRC1 + SRC2)

– 2 operand instructions (Intel)
• Second operand doubles as source and destination

• Format: ADD SRC1, S2/D (S2/D = SRC1 + S2/D)

– 1 operand instructions (Old Intel FP, Low-End Embedded)
• Implicit operand to every instruction usually known as the

Accumulator (or ACC) register

• Format: ADD SRC1 (ACC = ACC + SRC1)

4.80

General Instruction Format Issues

Single-Operand Two-Operand Three-Operand
LOAD X

ADD Y

SUB Z

STORE F

LOAD A

ADD B

STORE G

MOVE F,X

ADD F,Y

SUB F,Z

MOVE G,A

ADD G,B

ADD F,X,Y

SUB F,F,Z

ADD G,A,B

(+) Smaller size to encode each

instruction

(-) Higher instruction count to

load and store ACC value

Compromise of two extremes (+) More natural program style

(+) Smaller instruction count

(-) Larger size to encode each

instruction

• Consider the pros and cons of each format when performing the set of
operations
– F = X + Y – Z
– G = A + B

• Simple embedded computers often use single operand format
– Smaller data size (8-bit or 16-bit machines) means limited instruc. size

• Modern, high performance processors use 2- and 3-operand formats

4.81

Instruction Format

• Load/Store architecture
– Load (read) data values from memory

into a register

– Perform operations on registers

– Store (write) data values back to
memory

– Different load/store instructions for
different operand sizes (i.e. byte, half,
word)

Proc.

1.) Load operands to proc. registers

Mem.

Proc.

2.) Proc. Performs operation using

register values

Mem.

Proc.

3.) Store results back to memory

Mem.

Load/Store Architecture

